Advanced Higher Mathematics

The knowledge and skills covered by the course is detailed below. *Grade A/B material in italic type*.

Calculus

Differentiation	VG	OT	NS
Differentiate functions including polynomials, sinx, cosx, tanx,			
$\sec x$, $\csc x$, $\cot x$, e^x and $\ln x$.			
Differentiate functions using the chain rule			
Differentiate functions using the product rule			
Differentiate functions using the quotient rule			
Use above rules to differentiate functions requiring more than one			
application.			
Use logarithmic differentiation.			
Differentiate an inverse trig function.			
Use implicit differentiation to find first and <i>second derivatives</i> .			
Use parametric differentiation to find first and <i>second derivatives</i> .			

Properties of Functions	
Use vocabulary function, domain, range, inverse function,	
critical point, local minimum/maximum, global	
minimum/maximum, continuous, discontinuous and	
asymptote.	
Determine the domain and range of a function.	
Use derivative tests for locating and identifying maxima and	
minima.	
Use derivative tests to locate points of inflexion.	
Sketch related graphs $y = kf(x)$, $y = f(x) + k$, $y = f(x+k)$, $y = f(kx)$	
and $y = f(x) $.	
Determine whether a function is even, odd or neither and use	
properties in graph sketching.	
Find vertical and non-vertical asymptotes.	
Sketch graphs of real rational functions showing zeros,	
asymptotes, critical points and symmetry.	

Integration		VG	OT	NS
Integrate expressions using stand	ard results:			
$\hat{0} x^n dx = \frac{x^{n+1}}{n+1} + c, n^{-1} - 1$	$\hat{0} \sec^2 x dx = \tan x + c$			
$ \hat{0} \sin x dx = -\cos x + c $	$ \hat{0} e^x dx = e^x + c $			
$\hat{0}\cos xdx=\sin x+c$	$\hat{0} \frac{1}{x} dx = \ln x + c$			
$\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1} x + c$	$\int \frac{1}{1+x^2} dx = \tan^{-1} x + c$			
Integrate functions using a substi	tution.			
Prove standard integrals by subst	itution:			
$\hat{0} f(ax+b)dx = \frac{1}{a}F(ax+b) + cw$	here F is the antiderivative of f ,			
and $\hat{0} \frac{f(x)}{f(x)} dx = \ln f(x) + c$.				
Integrate rational functions by wr	iting in partial fractions.			
Integrate by parts including more	than one application.			

Solving Differential Equations	VG	OT	NS
Recognise differential equations and understand the terms linear,			
order, general solution, arbitrary constant, particular solution			
and initial conditions.			
Solve first order differential equations with separable variables.			
Solve first order linear differential equations using the integrating			
factor method and find particular solutions.			
Solve second order homogenous ODEs with constant coefficients,			
finding the general solution in each of the <i>three cases</i> .			
Solve second order non-homogeneous ODEs with constant			
coefficients using the auxiliary equation and particular integral			
method.			

Applications of Calculus	VG	OT	NS
Apply differentiation to rectilinear motion.			
Apply parametric equations to rectilinear motion.			
Solve practical problems involving rates of change.			
Apply differentiation to optimisation problems.			
Apply integration to the evaluation of areas and volumes of			
revolution <i>including integration w.r.t.</i> y.			
Find the Maclaurin expansion for simple functions and composites			
and their range of validity.			
Use the Maclaurin expansion to find a power series for a simple			
function to a stated number of terms.			

Algebra

Binomial theorem	VG	ОТ	NS
Calculate permutations and combinations.			
Understand the notation $n! {}^{n}C_{r}$ and $\begin{array}{c} \overset{\mathfrak{X}}{\varsigma} & n \stackrel{\ddot{O}}{\dot{\varsigma}} \\ \dot{\varsigma} & r \\ \dot{\varrho} & r \end{array}$			
Generate Pascal's triangle up to $n = 7$.			
Expand brackets using the binomial theorem.			
Find specific terms in the expansion.			

Partial fractions	VG	ОТ	NS
Express a proper rational function as a sum of			
partial fractions.			
Reduce an improper rational function to a			
polynomial and a proper rational function.			

Sequences and Series	VG	ОТ	NS
Understand terms: infinite sequence, infinite			
series, nth term, sum to n terms, sum to			
infinity, common difference, arithmetic			
sequence, common ratio, geometric sequence,			
recurrence relation.			
Know how to find n th terms:			
$U_n = a + (n-1)d$ for arithmetic sequences and			
$U_n = ar^{n-1}$ and for geometric sequences.			
Use summation formulae (given):			
$S_n = \frac{1}{2}n[2a + (n-1)d]$ for arithmetic sequences			
and $S_n = \frac{a(1-r^n)}{1-r}$ $r \neq 1$ for geometric sequences.			
Know that $S_{\infty} = \frac{a}{1-r} r < 1$ for geometric			
sequences and expand $\frac{1}{1-r}$ and $\frac{1}{a+b}$ as			
geometric sequences.			

Summations and Mathematical Proof	VG	OT	NS
Understand sigma notation			
Use formulae for $\sum r$, $\sum r^2$ and $\sum r^3$ and prove related results			
Prove results by mathematical induction			

Complex numbers	VG	OT	NS
Identify the real and imaginary parts of a complex number.			
Perform operations $+$, $-$, \times and \div on complex numbers and equate			
real and imaginary parts.			
Plot a complex number on an argand diagram.			
Know that a polynomial of degree n has n roots and that they			
occur in conjugate pairs.			
Factorise polynomials with real coefficients.			
Evaluate the modulus and argument of a complex number.			
Convert between polar and Cartesian form of a complex number.			
Use De Moivre's theorem to expand powers of complex numbers.			
Apply De Moivre's theorem to multiple angle formulae.			
Use De Moivre's theorem to find the nth roots of unity.			
Find the locus of a point in the complex plane.			

Direct and Indirect Proof	VG	OT	NS
Recognise the need for proof in mathematics.			
Understand the terms implies (\Rightarrow) , is implied by (\Leftarrow) and			
equivalence (\Leftrightarrow) .			
Directly prove simple results.			
Disprove a conjecture by providing a counter example.			
Prove a result using the contrapositive.			
Know and use the fundamental theorem of arithmetic.			
Use proof by contradiction.			

Number Theory	VG	OT	NS
Know the division algorithm.			
Use the Euclidian Algorithm to find the greatest common divisor			
of two positive integers.			
<i>Express the gcd as a linear combination of two integers.</i>			
Use the division algorithm to write integers in bases other than			
10.			

Matrices and Systems of Equations	VG	OT	NS
Understand terms: matrix, element, row, column, order,			
identity matrix, inverse, determinant, singular, non-singular			
and transpose.			
Add, subtract, multiply and equate matrices.			
Know properties:			
$A+B=B+A$ but $A\times B \neq B\times A$			
(AB)C=A(BC)			
A(B+C)=AB+AC			
(A')'=A			
(A+B)'=A'+B'			
(AB)'=B'A'			
$AB^{-1} = B^{-1}A^{-1}$			
Det(AB)=detAdetB			
Calculate the determinant of 2×2 and a 3×3 matrices.			
Find the inverse of a 2×2 and a 3×3 matrix, where these exist.			
Apply the inverse matrix to the solution of a system of equations.			
Use 2×2 matrices to represent geometrical transformations in the			
(<i>x</i> , <i>y</i>) plane.			
Use a matrix to organise a system of equations.			
Perform elementary row operations.			
Reduce a matrix to an upper triangular form.			
Solve a 3×3 system of equations using Gaussian Elimination on			
an augmented matrix.			
Find the solution to a system of linear equations given as $Ax=b$			
where there is a unique solution, no solution and an infinite family			
of solutions.			
Identify an ill-conditioned matrix.			
Vectors	VG	OT	NS
Calculate scalar and vector products in three dimensions.			
Know that $a \times b = -b \times a$.			
Know the equation of a line in vector, parametric and symmetric			
forms.			
Know the equation of a plane in vector, parametric and Cartesian			
forms.			
Find equations of lines and planes.			
Find the angle between two lines, between two planes and			
between a line and a plane.			
Find the intersection of two lines, a line and a plane and two or			
three planes.			