	Prelim Revision 2 Non-Calculator	30
1	For $f(x) = \sin x \cos x$ find $f'(x)$.	2
2	Find $\int \frac{6x^2 - 2}{x^3 - x + 3} dx$	3
3	Write down and simplify the general term for $(3p^3 - \frac{2}{p})^4$ Hence or otherwise find the term independent of p	5
4	Given that $z_1 = 1 + 2i$ and $z_2 = p - 4i$ Find $z_1\overline{z_2}$ and the value of p such that $z_1\overline{z_2}$ is a real number	3
5	Use Gaussian Elimination to give an expression for α in terms of λ $\begin{array}{l}x - y + 2z = -3\\ -x + 2y - 3z = 2\\ 2x - y + \alpha z = 1\end{array}$ Explain what happens when $\alpha = 3$ Find the solution corresponding to $\alpha = -13$	6
6	Using the substitution $t = 1 + \tan x$, show that $\int_{0}^{\frac{\pi}{4}} \frac{\sec^2 x}{1 + \tan x} dx = \ln 2$	5
7	Obtain the general solution of the differential equation $4\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + y = 3x + 10$	6

	Prelim Revision 2 Calculator	50
8	A geometric sequence has third and fifth terms 24 and 6 respectively	
	(a) Calculate the value of the common ratio	2
	(b) State why the associated geometric series has a sum to infinity	1
	(c) Find the value of this sum to infinity	2
9	Matrices C and D are given by:	
	$C = \begin{pmatrix} -2 & -1 & 1 \\ 3 & -1 & 1 \\ 2 & 0 & -1 \end{pmatrix} \text{ and } D = \begin{pmatrix} 1 & -4 & 1 \\ k+5 & 0 & 1 \\ 2 & 1 & 0 \end{pmatrix}$	
	(a) Find C^T the transpose of C	1
	(b) (i) find and simplify an expression for the determinant of D	2
	(ii) State the value of k such that D^{-1} does not exist	1
10	(a) Obtain partial fractions for $\frac{x-4}{x^2+x-2}$	
	(b) Hence find	3
	$\int \frac{x-4}{x^2+x-2} dx$	3
11	Verify that $1 - 3i$ is a solution of $z^4 - 4z^3 + 11z^2 - 14z - 30 = 0$	
	Hence find all the solutions to $z^4 - 4z^3 + 11z^2 - 14z - 30 = 0$	5
12	Use the division algorithm to express 1243_{10} in base 6	3

13	Given that $p(n) = n^2 - n$, where n is a positive integer, consider the statements	
	$\Lambda = n(n)$ is always even	
	$\mathbf{A} = p(n)$ is always even	
	B $p(n)$ is a multiple of 3	4
	For each statement, prove if it is true or, otherwise, disprove it	
14	A curve is defined by the equation $xy^2 - 2x^2y = 3$ for $x > 0$ and $y > 0$ Use implicit differentiation to find the equation of the tangent to the curve when $x = 1$	5
15	Tickets for a concert go on sale 30 days before the concert.	
	Over the month the rate at which the tickets sell can be modelled by	
	$\frac{dP}{dt} = \frac{t^2}{50}(50 - P)$	
	Where the percentage of tickets sold at time t days after the sale begins is $P\%$.	
	Obviously when $t = 0$, $P = 0$	
	Express P in terms of t explicitly	6
	2	
16	A function is defined over a suitable domain by $f(x) = \frac{x^3}{x^2-4}$	
	(a) Prove that it is an odd function	2
	(b) Find the equations of the vertical asymptotes	1
	(c) Find the equation of the non-vertical asymptote	2
	(d) Calculate the x-coordinates of the stationary points and determine their nature	4
	(e) Sketch the curve $f(x) = \frac{x^3}{x^2-4}$	3

Prelim Revision 2 - Answers
1
$$f'(x) = \cos x \cos x - \sin x \sin x = \cos^2 x - \sin^2 x \text{ or } \cos 2x$$

2. This is a common form where $\int \frac{f'(x)}{f(x)} dx = \ln |f(x)| + C$
 $\int \frac{6x^2 - 2}{x^3 - x + 3} dx = 2 \int \frac{3x^2 - 1}{x^3 - x + 3} dx = 2 \ln |x^3 - x + 3| + C$
3 The general term is
 $\binom{4}{r}(3p^3)^{4-r}(\frac{-2}{p})^r = \binom{4}{r}(3^{4-r})(-2)^r(p^{12-3r})(p^{-r}) = \binom{4}{r}(3^{4-r})(-2)^r(p^{12-4r})$
The independent term happens when, $12 - 4r = 0, r = 3$
 $\binom{4}{3}(3^1)(-2)^3(p^{12-12}) = 4 \times 3 \times -8 = -96$
4 $\overline{z}_2 = p + 4i,$
 $z_1\overline{z}_2 = (1 + 2i)(p + 4i) = p + 4i + 2ip + 8i^2 = p - 8 + (4 + 2p)i$
If $z_1\overline{z}_2$ is a real number $4 + 2p = 0, p = -2$
5 $\begin{pmatrix} 1 & -1 & 2 & : -3 \\ 0 & 1 & -1 & : -1 \\ 0 & 1 & \alpha - 4i & 7 \end{pmatrix} R_2 + R_1, R_3 - 2R_1$
 $\begin{pmatrix} 1 & -1 & 2 & : -3 \\ 0 & 1 & -1 & : -1 \\ 0 & 0 & \alpha - 3i & 8 \end{pmatrix} R_3 - R_2$
 $(\alpha - 3)z = 8, \quad z = \frac{8}{\alpha - 3}$
When $\alpha = 3$ the final row is inconsistent since $0 \neq 8$ so there are no solutions
When $\alpha = -13$, $z = \frac{9}{-16}z = -\frac{1}{2}, \quad y - z = -1, \quad y = -\frac{3}{2},$
 $x + \frac{3}{2} - 1 = -3, \quad x = -\frac{7}{2}$

6	$u = 1 + \tan x$, $du = \sec^2 x dx$ $x = \frac{\pi}{4}$ $u = 2$, $x = 0$ $u = 1$
	$\int_{1}^{2} \frac{1}{u} du = [\ln u]_{1}^{2} = \ln 2 - \ln 1 = \ln 2 \text{ as required}$
7	For the complimentary function $4m^2 + 4m + 1 = 0$,
	$(2m+1)^2 = 0 \ m = -\frac{1}{2}$
	$y = Ae^{-\frac{1}{2}x} + Bxe^{-\frac{1}{2}x}$
	For the particular integral $y = mx + c$, $\frac{dy}{dx} = m$, $\frac{d^{2y}}{dx^2} = 0$
	$4 \times 0 + 4m + mx + c = 3x + 10$
	mx = 3x so m = 3, 4m + c = 10 so c = -2 y = 3x - 2
	Thus the general solution is $y = Ae^{-\frac{1}{2}x} + Bxe^{-\frac{1}{2}x} + 3x - 2$
8	$ar^2 = 24$ and $ar^4 = 6$, $\frac{6}{24} = \frac{r^4}{r^2}$ so $\frac{1}{4} = r^2$ the common ratio is $\frac{1}{2}$
	this series has a sum to infinity as $\left \frac{1}{2}\right < 1$
	first term is 96 sun to infinity is $S_{\infty} = \frac{96}{1-\frac{1}{2}} = 192$
9	$C^{T} = \begin{pmatrix} -2 & 3 & 2 \\ -1 & -1 & 0 \\ 1 & 1 & -1 \end{pmatrix}$
	$\det D = 1 \times \det \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + 4 \times \det \begin{pmatrix} k+5 & 1 \\ 2 & 0 \end{pmatrix} + 1 \times \det \begin{pmatrix} k+5 & 0 \\ 2 & 1 \end{pmatrix}$
	= -1 - 8 + k + 5 = k - 4
	For D^{-1} to not exist $k - 4 = 0$, $k = 4$

 $\frac{\overline{x-4}}{x^2+x-2} = \frac{A}{x+2} + \frac{B}{x-1} \qquad A = 2, \qquad B = -1$ 10 $\int \frac{x-4}{x^2+x-2} dx = 2 \int \frac{1}{x+2} dx - \int \frac{1}{x-1} dx$ $= 2\ln(x+2) - \ln(x-1) + C = \ln\left(\frac{(x+2)^2}{x-1}\right) + C$ 1 - 3i 1 -4 -30 11 11 -14 No remainder so i - 3i is a solution to this polynomial. As is z = 1 + 3i1+3i 1 -3-3i -1+6i 3+9i $z^{4} - 4z^{3} + 11z^{2} - 14z - 30 = (z - 1 - 3i)(z - 1 + 3i)(z^{2} - 2z - 3)$ = (z - 1 - 3i)(z - 1 + 3i)(z - 3)(z + 1)Thus the solutions are $z = 1 \pm 3i$, z = 3, z = -112 $1243 = 6 \times 207 + 1$ $207 = 6 \times 34 + 3$ $34 = 6 \times 5 + 4$ $5 = 0 \times 6 + 5$ $1243_{10} = 5431_{6}$ 13 Positive integers take the form 2n or 2n + 1For 2n, $p(2n) = (2n)^2 - 2n = 4n^2 - 2n = 2(2n^2 - n)$ which is even for all positive values of n For 2n + 1, $p(2n + 1) = (2n + 1)^2 - (2n + 1) = 4n^2 + 2n = 2(2n^2 + n))$ which is even for all positive values of ntherefore **A** is true For n = 1, $p(n) = 5^2 - 5 = 20$ this is not divisible by 3 statement **B** is false

14	When $x = 1$, $y^2 - 2y - 3 = 0$ $(y - 3)(y + 1) = 0$, $y > 0$ so $y = 3$ Implicit differentiation
	$\frac{d}{du}(xy^{2}) + \frac{d}{du}(-2x^{2}y) = \frac{d}{du}(3)$ $y^{2} + 2xy\frac{dy}{dx} - 4xy - 2x^{2}\frac{dy}{dx} = 0$ $(2xy - 2x^{2})\frac{dy}{dx} = 4xy - y^{2}$ $\frac{dy}{dx} = \frac{4xy - y^{2}}{2xy - 2x^{2}}$
	For $x = 1, y = 3$ gradient is $\frac{12-9}{6-2} = \frac{3}{4}$
	Equation of the straight line is $y = \frac{3}{4}x + \frac{9}{4}$ or $4y = 3x + 9$
1 -	$dD + t^2$
15	Separating the variables for $\frac{dP}{dt} = \frac{t}{50}(50 - P)$
	$\frac{1}{z} dP = \frac{1}{z} t^2 dt$
	50 - P 50
	$\int \frac{1}{50-P} dP = \int \frac{1}{50} t^2 dt$
	$-\ln(50 - P) = \frac{1}{150}t^3 + C$
	$\ln(50 - P) = C - \frac{1}{150}t^3$
	when $t = 0$, $P = 0$ $\ln(50) = C$
	$\ln(50 - P) = \ln(50) - \frac{1}{150}t^3$
	$50 - P = e^{\ln(50) - \frac{1}{150}t^3}$
	$50 - P = 50e^{-\frac{1}{150}t^3}$
	$P = 50 - 50e^{-\frac{1}{150}t^3}$

16 (a)
$$f(-x) = \frac{(-x)^3}{(-x)^2 - 4} = \frac{-x^3}{x^2 - 4} = -\left(\frac{-x^3}{x^2 - 4}\right) = -f(x)$$
 hence this is an odd function
(b) Vertical asymptotes are $x = \pm 2$
(c) By long division $f(x) = x + \frac{4x}{x^2 - 4}$, non-vertical asymptote is $y = x$
(d) $f'(x) = \frac{3x^2(x^2 - 4) - 2x(x^3)}{(x^2 - 4)^2} = \frac{x^4 - 12x^2}{(x^2 - 4)^2} = \frac{x^2(x^2 - 12)}{(x^2 - 4)^2}$
 $f'(x) = 0, \quad x^4 - 12x^2 = 0, \quad x^2(x^2 - 12) = 0, \quad x = 0 \ x = \pm\sqrt{12}$
 $f''(x) = \frac{(4x^3 - 24x)(x^2 - 4)^2 - 2(x^2 - 4)(2x)(x^4 - 12x^2)}{(x^2 - 4)^4} = \frac{8x^3 + 96x^2}{(x^2 - 4)^3} = \frac{8x(x^2 + 12)}{(x^2 - 4)^3}$
 $f''(x) = 0, \quad x = 0$ possible point of inflexion at (0,0)
 $\boxed{\frac{x}{f''(x)} = 0, \quad x = 0}$ possible point of inflexion at (0,0)
 $\boxed{\frac{x}{f''(x)} = 0, \quad x = 0}$ down
Change of concavity, hence (0,0) is a point of inflexion
 $f''(\sqrt{12}) > 0$ min stationary point when $x = \sqrt{12}$
 $f''((-\sqrt{12}) < 0$ max stationary point when $x = -\sqrt{12}$

