Lesson 1 – Solving first order differential equations by separating variables

A first order differential equation takes the form $f(y)\frac{dy}{dx} = g(x)$

To find the general solution to this differential equation we use the technique of **separating variables**

Separate the variables

$$f(y)\frac{dy}{dx} = g(x)$$

$$f(y)dy = g(x)dx$$
Integrate both sides

$$\int f(y)dy = \int g(x)dx$$
State explicit or implicit solution

$$F(y) = G(x) + c$$

Where F(y) and G(x) are the antiderivatives of f(y) and g(x)

This process will use common forms, integration by substitution and integration by parts. Also watch out for $\int \frac{1}{1+x^2} dx = tan^{-1}x + C$

Example 1 find the general solution to the equation $x \frac{dy}{dx} = 4$

Separate the variables
$$x \frac{dy}{dx} = 4$$

 $dy = \frac{4}{x} dx$
Integrate both sides $\int 1 dy = \int \frac{4}{x} dx$
explicit $y = 4 \ln x + C$

Example 2 find the general solution to the equation $\frac{dy}{dx} = 3xy$

Separate the variables

$$\frac{dy}{dx} = 3xy$$

$$\frac{1}{y} dy = 3x dx$$
Integrate both sides

$$\int \frac{1}{y} dy = \int 3x dx$$
implicit solution

$$\ln y = \frac{3}{2}x^2 + C$$

$$y = e^{\frac{3}{2}x^2 + C}$$

When given **initial conditions** (values for x and y) you can then find the **particular** solution to a differential equation.

Example 1 find the particular solution to the equation $\frac{dy}{dx} = \frac{y-4}{x+3}$ Given that y = 20 when x = 5

$$\frac{dy}{dx} = \frac{y-4}{x+3} \to \frac{1}{y-4} dy = \frac{1}{x+3} dx$$
$$\int \frac{1}{y-4} dy = \int \frac{1}{x+3} dx$$
$$\ln(y-4) = \ln(x+3) + C$$
$$\ln 16 = \ln 8 + C, \quad C = \ln 2$$
$$\ln(y-4) = \ln(x+3) + \ln 2$$
or
$$\ln(y-4) = \ln(2x+6) \to y = 2x + 10$$

In MIA - Exercise 8.1 Q1 general solutions (not Q1g), Q2a-2i particular solutions In Leckie and Leckie - Exercise 5A Q1 general solutions, Q2 particular solutions.

Lesson 2 - Modelling real-life situations using differential equations

Example 1 - From Higher Past Paper

The rate of change of the temperature $T^{0}C$ of a mug of coffee is given by

$$\frac{dT}{dt} = \frac{1}{25}t - k, \qquad 0 \le 5 \le 50$$

- *t* is the elapsed time in minutes after the coffee is poured into the mug
- *k* is the constant of proportionality
- Initially the temperature of the coffee is 100 °C
- 10 minutes later the temperature has fallen to 82 °C

Express T in terms of t.

$$\frac{dT}{dt} = \frac{1}{25}t - k \rightarrow dT = \frac{1}{25}t - k dt$$
$$\int 1 dT = \int \frac{1}{25}t - k dt$$
$$T = \frac{1}{50}t^2 - kt + C$$

When
$$t = 0$$
, T is 100 °C.
 $100 = \frac{1}{50}0^2 - k \times 0 + C$, $C = 100$
 $T = \frac{1}{50}t^2 - kt + 100$

When
$$t = 10$$
, T is 82 °C.
 $82 = \frac{1}{50} 10^2 - 10k + 100 \rightarrow -20 = -10k \rightarrow k = 2$
 $T = \frac{1}{50} t^2 - 2t + 100$

Example 2

The rate of growth for a virus is said to be directly proportional to the number of people infected with the virus. This can be modelled by

$$\frac{dN}{dt} \propto N$$
, $\frac{dN}{dt} = kN$ where *k* is the constant of proportion

Where t is time in days and N is the number of people infected

When t = 0 4 people have been infected.

When t = 2 days, 80 people have been infected.

Express n **explicitly** in terms of t and find how long it takes for 50 000 people to be infected.

$$\frac{dN}{dt} = kN \rightarrow \frac{1}{N}dN = k dt$$
$$\int \frac{1}{N} dN = \int k dt$$
$$\ln N = kt + C$$
$$N = e^{kt+c}$$
$$N = e^{kt}e^{c}$$
$$N = Ae^{kt}, \text{ where } A = e^{c}$$

When t = 0 4 people have been infected.

$$4 = Ae^0 \quad \rightarrow A = 4 \qquad \qquad N = 4e^{kt}$$

When t = 2 days, 80 people have been infected.

$$80 = 4e^{2k} \to 20 = e^{2k} \to 20 = (e^k)^2 \to 20^{\frac{1}{2}} = e^k \qquad N = 4 \times 20^{\frac{t}{2}}$$

For 50 000 people to become infected.

$$50000 = 4 \times 20^{\frac{t}{2}} \rightarrow \frac{50000}{4} = 20^{\frac{t}{2}} \rightarrow \log_{20}(12500) = \frac{t}{2} \rightarrow t = 6.3 \ days$$

In MIA - Exercise 8.2 - Q5 worked through so try some of Q2 – 7 In Leckie and Leckie - Exercise 5A Q3 to Q8

Lessons 3 & 4

Solving differential equations using the integrating factor method

When solving a first order differential equation in the form

 $\frac{dy}{dx} + P(x)y = Q(x)$ where P and Q are functions involving x only.

We can use an integrating factor $I(x) = e^{\int P(x)dx}$ to ease the integration.

For simplicity the notation used will change to $\frac{dy}{dx} + Py = Q$, and $I = e^{\int P dx}$

To solve the differential equation	$\frac{dy}{dx} + \frac{2y}{x} = x$	
1. Identify <i>P</i> (the coefficient of <i>y</i>)	$P=\frac{2}{x},$	
2. Find the integrating factor $I = e^{\int P dx}$	$\int P dx = 2 \int \frac{1}{x} dx = 2 \ln x$ $I = e^{2 \ln x} = e^{\ln x^2} = x^2$	
 Multiply through by the integrating factor 	$x^{2}\frac{dy}{dx} + x^{2}\frac{2y}{x} = x^{2} \times x$ $x^{2}\frac{dy}{dx} + 2xy = x^{3}$	
4. Integrate both sides	$\int \left(x^2 \frac{dy}{dx} + 2xy\right) dx = \int x^3 dx$	
Remember that the LHS has been		
engineered to be $ye^{\int P dx} = Iy$	$Iy = \int x^3 dx$	
	$Iy = \int x^3 dx$ $x^2 y = \frac{1}{4}x^4 + c$	
5. Divide through by the coefficient of <i>y</i>	$y = \frac{1}{4}x^2 + \frac{c}{x^2}$	
The solution is made up of two parts: the particular solution which satisfies the original equation and the complementary function which contains the constant of integration		
As $\frac{d}{dx}(x^2y) = 2xy + x^2\frac{dy}{dx}$, then $\int \left(x^2\frac{dy}{dx} + 2xy\right)dx = x^2y$		

Remember that when integrating the RHS you might have to use common forms, substitution or integration by parts.

Example 2

Find the general solution to
$$\frac{dy}{dx} + 2xy = x$$

$$P = 2x, \ \int Pdx = \int 2x \, dx = x^2 \qquad I = e^{\int P \, dx} = e^{x^2}$$
$$e^{x^2} \frac{dy}{dx} + 2xye^{x^2} = xe^{x^2}$$
$$\int \left(e^{x^2} \frac{dy}{dx} + 2xye^{x^2}\right) dx = \int xe^{x^2} dx$$
$$Iy = \int xe^{x^2} dx$$
$$Iy = \int xe^{x^2} dx$$
$$e^{x^2} y = e^{x^2} + c = \frac{\frac{1}{2}e^{x^2} + c}{e^{x^2}}$$
$$y = \frac{1}{2} + \frac{c}{e^{x^2}}$$
As $\frac{d}{dx}(e^{x^2}y) = 2xe^{x^2}y + e^{x^2} \frac{dy}{dx}, \ \text{then} \quad \int \left(e^{x^2} \frac{dy}{dx} + 2xye^{x^2}\right) dx = e^{x^2}y$

Example 2 Solve $\frac{dy}{dx} + \frac{y}{2} = e^x$, given the initial conditions x = 0, $y = e^x$

$$P = \frac{1}{2}, \quad \rightarrow \int \frac{1}{2} \, dx = \frac{1}{2}x \qquad I = e^{\frac{1}{2}x}$$
$$e^{\frac{1}{2}x} \frac{dy}{dx} + \frac{ye^{\frac{1}{2}x}}{2} = e^{x}e^{\frac{1}{2}x}$$
$$\int \left(e^{\frac{1}{2}x} \frac{dy}{dx} + \frac{ye^{\frac{1}{2}x}}{2}\right) dx = \int e^{\frac{3}{2}x} \, dx$$
$$Iy = \int e^{\frac{3}{2}x} \, dx$$
$$e^{\frac{1}{2}x} \, y = \frac{2}{3}e^{\frac{3}{2}x} + C$$
$$e^{0} e = \frac{2}{3}e^{0} + C \quad \rightarrow \quad C = e - \frac{2}{3}$$
$$y = \frac{2e^{\frac{3}{2}x} + 3e - 2}{3e^{\frac{1}{2}x}} \quad \text{or} \quad y = \frac{1}{3}\left(2e^{x} + 3e^{\frac{1}{2}x} - e^{-\frac{1}{2}x}\right)$$

In MIA - Exercise 8.3 - Half of Q1,2 Q4 – 7 for extension In Leckie and Leckie - Exercise 5B Q1 to Q8

SI

Lessons 5 & 6 Solving Second order differential equations

Second order differential equations take the form $a \frac{d^2y}{dx^2} + b \frac{dy}{dx} + cy = Q(x)$

If $a \frac{d^2y}{dx^2} + b \frac{dy}{dx} + cy = 0$ you have homogeneous equations

To find the general or particular solutions to a second order homogeneous DE:

- 1. Identify the auxiliary equation
- 2. Solve the auxiliary equation
- 3. Express your general solution in one of the three forms
- 4. For a particular solution, two initial conditions must be given

Condition 1 y = b when x = a Condition 2 $\frac{dy}{dx} = c$ when x = a

For a second order DE in the form $a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = 0$ Then the auxiliary equation is a quadratic in the form $am^2 + bm + c = 0$		
If $b^2 - 4ac > 0$	If $b^2 - 4ac = 0$	If $b^2 - 4ac < 0$
Then there are two real, distinct roots. Factorise and solve for m_1 and m_2	Then the roots are coincident Use $m = -\frac{b}{2a}$	Then the roots are non-real Use the quadratic formula $m = p \pm qi$
$y = Ae^{m_1x} + Be^{m_2x}$	$y = Ae^{mx} + Bxe^{mx}$	$y = e^{px} \left(A \cos qx + B \sin qx \right)$

Example 1

Find the general solution to
$$2\frac{d^2y}{dx^2} - 5\frac{dy}{dx} - 3y = 0$$

The auxiliary equation is
 $2m^2 - 5m - 3 = 0$, $b^2 - 4ac = 1$
 $(2m + 1)(m - 3) = 0$
 $m_1 = -\frac{1}{2}$, $m_2 = 3$,
Thus the general solution is $y = Ae^{-\frac{1}{2}x} + Be^{3x}$

Example 2 Find the particular solution to $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = 0$ given the initial conditions x = 0, y = 1 and $\frac{dy}{dx} = 0$ The auxiliary equation is $m^2 - 4m + 4 = 0$, $b^2 - 4ac = 0$ Thus $m = \frac{4}{2} = 2$ and the general solution is $y = Ae^{2x} + Bxe^{2x}$ x = 0, y = 1 $1 = Ae^0 + 0 \rightarrow 1 = A$ $x = 0, \frac{dy}{dx} = 0$ $\frac{dy}{dx} = 2Ae^{2x} + Be^{2x} + 2Bxe^{2x}$ 0 = 2A + B $\rightarrow B = -2$ The particular solution is $y = e^{2x} - 2xe^{2x}$

Example 3 Find the particular solution to $\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 10y = 0$ given the initial conditions x = 0, y = 1 and $\frac{dy}{dx} = 0$ The auxiliary equation is $m^2 - 6m + 10 = 0$, $b^2 - 4ac = -4$ $m = \frac{6 \pm \sqrt{4}}{2}$, $m = 3 \pm i$ $y = e^{3x} (A \cos x + B \sin x)$ x = 0, y = 1 $1 = A \cos 0 + B \sin 0$ 1 = A $\frac{dy}{dx} = 3Ae^{3x} \cos x - Ae^{3x} \sin x + 3Be^{3x} \sin x + Be^{3x} \cos x$ $x = 0, \frac{dy}{dx} = 0$ 0 = 3A - 0 + 0 + B B = -3The particular solution is $y = e^{3x} (\cos x - 3 \sin x)$

In MIA textbook	Exercise 8.4 where roots are real and distinct
	Exercise 8.5 where roots are real and coincident
	Exercise 8.6 where roots are non-real
	Exercise 8.7 mixture of roots
In Leckie and Lecki	ie – Exercise 5C, do the whole exercise.

Lesson 7 Heterogeneous second-order differential equations $(\neq 0)$

When given a second order differential equation in the form

$$a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = Q(x)$$

Then general solution to this non-homogeneous equation is y = g(x) + k(x)

Where - g(x) is referred to as the particular integral PI

-

k(x) is called the **complementary function** CF

The **complementary function CF** comes from the solution to the auxiliary equations (see homogeneous second order DE)

The particular integral PI is found by:

- 1. guessing that y = g(x) will take the same general shape as Q(x)
- 2. Calculating the derivative and second derivative of g(x)
- 3. Equating coefficients to establish an equation for g(x)

For $a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + c = Q(x)$		
For the complementary function CF	For the particular integral PI	
For the auxiliary equation	If $Q(x)$ is a linear function	
$am^2 + bm + c = 0$	Try $y = ax + b$	
If roots are real and distinct	If $Q(x)$ is a quadratic function	
$y = Ae^{m_1 x} + Be^{m_2 x}$	Try $y = ax^2 + bx + c$	
If roots are real and coincident	If $Q(x)$ is an exponential function	
$y = Ae^{mx} + Bxe^{mx}$	Try $y = ae^{bx}$	
If roots are non-real	If $Q(x)$ is a trig function	
$y = e^{px} \left(A \cos qx + B \sin qx \right)$	Try $y = a \cos x + b \sin x$	

Example 1 Find the general solution to $\frac{d^2y}{dx^2} - 7\frac{dy}{dx} + 10y = 20x - 4$ **For the complementary function CF** The auxiliary equation is $m^2 - 7m + 10 = 0$ (m-5)(m-2) = 0, m = 5 and m = 2 **CF is** $y = Ae^{5x} + Be^{2x}$ **For the particular integral PI** 20x - 4 is a linear function, y = cx + d, $\frac{dy}{dx} = c$, $\frac{d^2y}{dx^2} = 0$ Substitution into the original equation 0 - 7a + 10(cx + d) = 20x - 4 -7c + 10d = -4, $10c = 20 \rightarrow c = 2$, d = 1 **PI is** y = 2x + 1**The general solution is** $y = Ae^{5x} + Be^{2x} + 2x + 1$

Example 2 Find the general solution to $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 5y = 30 \sin x$ For the complementary function CF The auxiliary equation is $m^2 - 2m + 5 = 0$, $m = 1 \pm 2i$ CF is $y = e^x (A \cos 2x + B \sin 2x)$ For the particular integral PI $y = d \cos x + e \sin x$, $\frac{dy}{dx} = e \cos x - d \sin x$, $\frac{d^2y}{dx^2} = -d \cos x - e \sin x$ Substitution into the original equation gives $-d \cos x - e \sin x - 2(e \cos x - d \sin x) + 5(d \cos x + e \sin x) = 30 \sin x$ $(-d - 2e + 5d) \cos x + (-e + 2d + 5e) \sin x = 30 \sin x$ 4d - 2e = 0, 2d + 4e = 30, e = 6, d = 3PI is $y = 3 \cos x + 6 \sin x$, The general solution is $y = e^x (A \cos 2x + B \sin 2x) + 3 \cos x + 6 \sin x$,

In MIA - Exercise 8.8 - Try the whole exercise (in each case a suggested PI is given) In Leckie and Leckie – Exercise 5D Q1 is find the general solution

Lesson 8 Identify the particular solution to a non-homogeneous 2ODE 0)

- 1. Identify the complimentary function (k(x)) using the auxiliary equation
- 2. Identify the particular integral (g(x))
- 3. State the general solution in the form y = k(x) + g(x)
- 4. Use the particular conditions given (including the derivative of the general solution) to identify any coefficients in the general solution

Example 1 Find the particular solution to $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = 2x^2 + 1$ given the initial conditions x = 0, y = 5 and $\frac{dy}{dx} = 3$ For the complementary function CF the auxiliary equation is $m^2 - 3m + 2 = 0$, (m - 2)(m - 1) = 0**CF** is $y = Ae^{2x} + Be^{x}$ For the particular integral PI - using $y = ax^{2} + bx + c$ $y = ax^2 + bx + c$, $\frac{dy}{dx} = 2ax + b$, $\frac{d^2y}{dx^2} = 2a$ Substitution into the original equation gives $2a - 6ax - 3b + 2ax^2 + 2bx + 2c = 2x^2 + 1$ $2ax^2 = 2x^2$, 2bx - 6ax = 0, 2a + 2c - 3b = 1a = 1, 2b - 6 = 0, b = 3, 2 - 9 + 2c = 1, c = 4Pl is $v = x^2 + 3x + 4$, The general solution is $v = Ae^{2x} + Be^x + x^2 + 3x + 4.$ **For the particular solution where** x = 0, y = 5 and $\frac{dy}{dx} = 3$ 5 = A + B + 4, 1 = A + B $\frac{dy}{dx} = 2Ae^{2x} + Be^x + 2x + 3$ 3 = 2A + B + 3, 0 = 2A + B, A = -1, B = 2The particular solution is $y = 2e^x - e^{2x} + x^2 + 3x + 4$,

In MIA - Exercise 8.9 - Q1 and 2 is sufficient, Q3 not necessary In Leckie and Leckie – Exercise 5D Q2 is find the particular solution Be careful with your initial choice for the PI. Ideally the PI takes the same form as Q(x) – so if $Q(x) = e^x$, then try $y = ae^x$. However, if after substitution we end up with 0 = Q(x) then try y = xQ(x) or $y = x^2Q(x)$.

For example

If $CF = Ae^{3x} + Be^{2x}$ and $Q(x) = 2e^{2x}$ try $y = axe^{2x}$ as $y = e^{2x}$ is in the CF If $CF = Ae^{2x} + Bxe^{2x}$ and $Q(x) = 3e^{2x}$, try $y = ax^2e^{2x}$ as both ae^{2x} and axe^{2x} are both in the CF

Try not to arrive at $0 \neq Q(x)$ and if you do, then rethink your choice for PI

Solve the differential equation $\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = 4e^{3x}$ 2013 Q14 Given that y = 1 and $\frac{dy}{dx} = -1$, when x = 0For the complementary function CF the auxiliary equation is $m^2 - 6x + 9 = 0$, $(m - 3)^2 = 0$ CF is $y = Ae^{3x} + Bxe^{3x}$ For the particular integral PI $y = Ae^{3x}$ and $y = Bxe^{3x}$ are in CF so try $y = Cx^2e^{3x}$ $y = Cx^2 e^{3x}$, $\frac{dy}{dx} = 2Cxe^{3x} + 3Cx^2 e^{3x}$, $\frac{d^2y}{dx^2} = 2Ce^{3x} + 6Cxe^{3x} + 6Cxe^{3x} + 9Cx^2e^{3x}$ Substitution into the original equation gives $2Ce^{3x} + 6Cxe^{3x} + 6Cxe^{3x} + 9Cx^2e^{3x} - 12Cxe^{3x} - 18Cx^2e^{3x} + 9Cx^2e^{3x} = 4e^{3x}$ $2Ce^{3x} = 4e^{3x}, C = 2$ Thus Pl is $y = 2x^2e^{3x}$ The general solution is $y = Ae^{3x} + Bxe^{3x} + 2x^2e^{3x}$ **For the particular solution where** x = 0, y = 1 and $\frac{dy}{dx} = -1$ $1 = Ae^0 + 0 + 0$, A = 1 $\frac{dy}{dx} = 3Ae^{3x} + Be^{3x} + 3Bxe^{3x} + 4xe^{3x} + 6x^2e^{3x}$ -1 = 3A + B, -4 = B, The particular solution is $y = e^{3x} - 4xe^{3x} + 2x^2e^{3x}$