	Revision 1 for the A/B October Test	40
1	Express the binomial expansion of $\left(3 + \frac{1}{2}x\right)^4$	3
2	Differentiate (a) $\cos^{-1} 4x$	2
	(b) xe^{x^2}	3
3	The first term of an arithmetic sequence is 2 and the 20 th term is 97. Obtain the sum of the first 50 terms	4
4	The function $f(x)$ is defined by $f(x) = x^2 - a^2$	
	(a) State whether $f(x)$ is odd, even or neither. Give a reason for your answer	2
	(b) Sketch the graph of $y = f(x) $	1
5	Find the equation of the tangent to the curve $x^2 + 3xy + y^2 = -1$ at the point (-1,1)	5
6	Given that $u_k = 11 - 2k$, $(k \ge 1)$. Obtain a formula for	
	$S_n = \sum_{r=1}^n u_k$	
	Find the values of <i>n</i> for which $S_n = 21$	4
7	Prove by induction that $\frac{d^n}{dx^n}(xe^x) = (x+n)e^x$ for all integers $n \ge 1$	5

8	(a) Express $\frac{x^2}{(x+1)^2}$ in the form $A + \frac{B}{x+1} + \frac{C}{(x+1)^2}$, $x \neq -1$ stating the values of the constants <i>A</i> , <i>B</i> and <i>C</i> .	3
	(b) A curve is defined by $y = \frac{x^2}{(x+1)^2}$ (i) write down the equations of the asymptotes	2
	(ii) Find any stationary points or points of inflexion and justify their nature	4
	(iii) Sketch the curve clearly marking the features found above	2

Revision 1 - Answers
 40

 1

$$3^4 + 4 \cdot 3^3 \cdot (\frac{1}{2}x) + 6 \cdot 3^2 \cdot (\frac{1}{2}x)^2 + 4 \cdot 3^1 \cdot (\frac{1}{2}x)^3 + (\frac{1}{2}x)^4$$

 $= 81 + 54x + \frac{27}{2}x^2 + \frac{3}{2}x^3 + \frac{1}{16}x^4$
 2(a)

 2(a)
 $y = \cos^{-1}u$, $u = 4x$
 $\frac{dy}{dx} = -\frac{1}{\sqrt{1-u^2}} \times 4 = -\frac{4}{\sqrt{1-16x^2}}$
 (b)

 $\frac{dy}{dx} = (1) \times e^{x^2} + x \times 2xe^{x^2} = e^{x^2} + 2x^2e^{x^2}$
 (b)
 $\frac{dy}{dx} = (1) \times e^{x^2} + x \times 2xe^{x^2} = e^{x^2} + 2x^2e^{x^2}$
 (c)

 3
 $97 = 2 + d(20 - 1)$, $95 = 19d$, $d = 5$
 (c)
 (c)
 (c)
 (c)

 $\frac{dy}{dx} = (1) \times e^{x^2} - a^2$,
 $f(-x) = (-x)^2 - a^2$
 (c)
 (c)
 (c)
 (c)

 $\frac{f(-x) = f(x)}{f(-x) = f(x)}$, thus the graph is even (reflects in the y-axis)
 (c)
 (c)

$$S_{n} = \sum_{r=1}^{n} 11 - 2k = \sum_{r=1}^{n} 11 + 2\sum_{r=1}^{k} k$$

$$= 11n - 2\left(\frac{n}{2}(n+1)\right)$$

$$= 11n - n^{2} - n = 10n - n^{2}$$

$$10n - n^{2} = 21, \quad n^{2} - 10n + 21 = 0, \quad (n-3)(n-7) = 0$$
For $s_{n} = 21$ $n = 3$ and 7
7 For $n = 1$, LHS $\frac{d}{dx}(xe^{x}) = e^{x} + xe^{x} = (1+x)e^{x} = (x+1)e^{x}$
RHS $(x+1)e^{x}$ so true for $n = 1$
Assume that the statement is true for $n = k\frac{d^{k}}{dx^{k}}(xe^{x}) = (x+k)e^{x}$
Now consider $n = k + 1$
 $\frac{d^{k-1}}{dx^{k+1}}(xe^{x}) = \frac{d}{dx}\left(\frac{d^{k}}{dx^{k}}(xe^{x})\right)$
 $= \frac{d}{dx}(x+k)e^{x}$
 $= 1(e^{x}) + e^{x}(x+k)$
 $= e^{x}(1+x+k)$
 $= (x + (k+1))e^{x}$
So statement is true for $n = k + 1$.
Since true for $n = 1, n = k$ and $n = k + 1$, then by induction this is true for all positive integers n

(a) By algebraic long division $\frac{x^2}{(x+1)^2} = 1 - \frac{2x+1}{(x+1)^2} = 1 - \frac{2}{x+1} + \frac{1}{(x+1)^2}$ 8 A = 1, B = -2 and C = 1 $y = \frac{x^2}{(x+1)^2}$ is undefined when x = -1, (b) (i) so has a vertical asymptote at x = -1From part (a) so there is a horizontal asymptote at y = 1. Or $f(x) = 1 - \frac{2}{x+1} + \frac{1}{(x+1)^2}$ tends to $\rightarrow 1$ as $x \rightarrow \infty$ (ii) $f'(x) = \frac{2x(x+1)^2 - 2x^2(x+1)}{(x+1)^4} = \frac{2x}{(x+1)^3}$ $f''(x) = \frac{2(x+1)^3 - 6x(x+1)^2}{(x+1)^6} = \frac{2 - 4x}{(x+1)^4}$ f'(x) = 0 when 2x = 0, x = 0 thus there is a stationary point at (0,0) f''(0) > 0 so this is a minimum stationary point. f''(x) = 0 when 2 - 4x = 0, $x = \frac{1}{2}$, possible point of inflexion at $\left(\frac{1}{2}, \frac{1}{9}\right)$ 1/2 \rightarrow \rightarrow x $\overline{f}''(x)$ Positive 0 negative concavity up down Change of concavity so $\left(\frac{1}{2}, \frac{1}{9}\right)$ is a point of inflexion

