	Revision 2 for the A/B October Test	40
1	Differentiate (a) $x^3 \ln(4x+1)$	3
	(b) $\frac{\cos x}{x}, x \neq 0$	3
2	Write down and simplify the general term in the expansion of $\left(x + \frac{1}{x}\right)^{10}$	3
	Hence or otherwise obtain the term independent of x	2
3	A geometric sequence has first term 80 and common ratio $\frac{1}{3}$ Calculate the sum to infinity of the associated geometric series	2
4	Express $\frac{3x^2-5x+2}{x^3+x}$ in partial fractions	3
5	Given that $y = 3^{2x}$, use logarithmic differentiation to obtain $\frac{dy}{dx}$ in terms of x	3
6	Part of the straight-line graph of a function $f(x)$ is shown (0, c) (0, c) (2, 0) (a) Sketch the graph of the inverse function $f^{-1}(x)$, showing points of intersection with the axes.	
	(b) Sketch the graph of the modulus function $ f(x) $	4

7	For the curves with the parametric equations	
	$x = 2 + t^2, y = t^3 - 2t$	
	Obtain $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ as functions of t	5
8	Prove by induction that, for all positive integers n ,	5
	$\sum_{n=1}^{n} r(3r - 1) = n^2(n + 1)$	
	$\sum_{r=1}^{r} r(3r-1) = n (n+1)$	
9	$x^{-3} \rightarrow 2$	
9	The function f is defined by $f(x) = \frac{x-3}{x+2}, x \neq -2$	
	(a) Obtain algebraically the asymptotes of the graph of f	3
	(b) Prove that f has no stationary points	2
	(c) Does the graph of <i>f</i> have any points of inflexion? Justify your answer	2

	Revision 2 for the A/B October Test	40
1(a)	$\frac{dy}{dx} = 3x^2 \ln(4x+1) + x^3 \times \frac{4}{4x+1} = 3x^2 \ln(4x+1) + \frac{4x^3}{4x+1}$	
(b)	$\frac{dy}{dx} = \frac{(-\sin x)x - 1(\cos x)}{x^2} = \frac{-x\sin x - \cos x}{x^2} = -\frac{x\sin x + \cos x}{x^2}$	
2	The general term is $\binom{10}{r} (x)^{10-r} \left(\frac{1}{x}\right)^r = \binom{10}{r} \frac{x^{10-r}(1)^r}{x^r} = \binom{10}{r} (1)^r x^{10-2r}$	
	The independent term occurs when $x^{10-2r} = x^0$, $r = 5$ $\binom{10}{5}(1)^5 x^0 = 252$	
3	The sum to infinity is $\frac{80}{1-\frac{1}{3}} = 120$	
4	$\frac{3x^2 - 5x + 2}{x^3 + x} = \frac{3x^2 - 5x + 2}{x(x^2 + 1)}$ $\frac{3x^2 - 5x + 2}{x(x^2 + 1)} = \frac{A}{x} + \frac{Bx + C}{x^2 + 1}$ $\frac{3x^2 - 5x + 2}{x(x^2 + 1)} = \frac{A(x^2 + 1)}{x} + \frac{x(Bx + C)}{x^2 + 1}$	
	Using $x = 0$, $2 = A$, Using $x = 1$, $0 = A + B + C$, $B + C = -4$ Using $x = -1$, $10 = 2A + B - C$, $B - C = 6$, $B = 1$, $C = -5$ $2w^2$ For $12 - 2$ or 5	
	$\frac{3x^2 - 5x + 2}{x(x^2 + 1)} = \frac{2}{x} + \frac{x - 5}{x^2 + 1}$	
5	$y = 3^{2x}$, $\ln y = \ln 3^{2x}$, $\ln y = 2x \ln 3$	
	$\frac{d}{dx}(\ln y) = \frac{d}{dx}(2x \ln 3)$ $\frac{1}{y}\frac{dy}{dx} = 2 \ln 3$ $\frac{dy}{dx} = (2\ln 3)y = 2\ln 3.3^{2x}$	

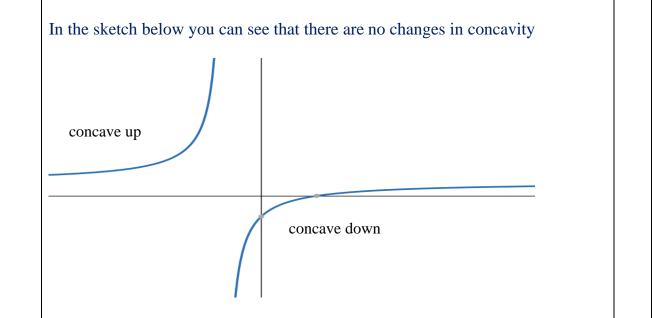
9(a)

A vertical asymptote exists at x = -2

Using algebraic long division $\frac{x-3}{x+2} = 1 - \frac{5}{x+2}$, so there is a horizontal asymptote at y = 1.

Or $f(x) = \frac{x-3}{x+2} = \frac{1-\frac{3}{x}}{1+\frac{2}{x}}$ this $\rightarrow 1$ and $x \rightarrow \infty$ showing a horizontal asymptote at y = 1

(b)


$$f'(x) = \frac{(x+2) - (x-3)}{(x+2)^2} = \frac{5}{(x+2)^2}$$

f'(x) > 0 for all values of x, function is always increasing so there are no stationary values for f(x)

(c)

$$f''(x) = -\frac{10}{(x+2)^3}, f''(x)$$
 is undefined at $x = -2$

f''(x) > 0 for all values of x so there are no solutions to $f'(x) \neq 0$, x = -2 is an asymptote for f(x) so there are no points of inflexion for f(x)

