	Revision 2 for the A/B September Test	40
1	Write down and simplify the general term in the expansion of $\left(x + \frac{1}{x}\right)^{10}$	3
	Hence or otherwise obtain the term independent of x	2
2	Express $\frac{4x+17}{(x+3)^2}$ as a sum of partial fractions	3
3	Differentiate (a) $3\tan(\sin x)$	3
	(b) $\sqrt{\ln 4x}$	3
	(c) $\frac{\cos x}{x}$, $x \neq 0$	3
4	Find the equation of the tangent to the curve $x^2 + 3xy + y^2 = -1$ at the point (-1,1)	6
5	Given that $z = -1 + 2i$ is a root of the equation $z^3 + z - 10 = 0$. Obtain all the roots and plot these on an Argand Diagram	5
6	A geometric sequence has first term 80 and common ratio $\frac{1}{3}$ Calculate the sum to infinity of the associated geometric series	2
7	On a suitable domain $f(x) = \tan x$ (a) Show that the third derivative of $f(x)$ is given by $f'''(x) = 2 \sec^4 x + 4 \tan^2 x \sec^2 x$	3
	(b) Hence obtain the Maclaurin expansion of $f(x) = \tan x$ up to and including the term in x^3	2
8	Use the substitution $u = 1 + x^2$ to obtain	
	$\int_0^1 \frac{x}{\sqrt{(1+x^2)}} dx$	5