	Polynomials	
1	(a) Show that $(x - 1)$ is a factor of $2x^3 + x^2 - 8x + 5$	2
	(b) Hence fully factorise $2x^3 + x^2 - 8x + 5$	3
	(c) Solve $2x^3 + x^2 - 8x + 5 = 0$	1
2	(a) Show that $(x - 4)$ is a factor of $x^3 - 5x^2 + 2x + 8$	2
	(b) Hence fully factorise $x^3 - 5x^2 + 2x + 8$	3
	(c) Solve $x^3 - 5x^2 + 2x + 8 = 0$	1
3	(a) Show that $(x - 1)$ is a factor of $f(x) = 3x^3 + 4x^2 - 5x - 2$ and hence factorise $f(x)$ fully	5
	(b) Solve $3x^3 + 4x^2 - 5x - 2 = 0$	1
4	Fully factorise $2x^3 + 5x^2 - 4x - 3$	5
5	(a) Show that x = 2 is a root of the equation $2x^3 + x^2 - 13x + 6 = 0$	5
	(b) Hence find the other roots	1
6	(a) Show that $(x - 2)$ is a factor of $x^3 - 3x^2 + 4$	2
	(b) Hence fully factorise this polynomial	3
	(c) Solve $x^3 - 3x^2 + 4 = 0$	1
	(d) Identify the coordinates of the turning point at the x -axis	1

	Polynomials - Answers
1.	using synthetic division for x = 1
	121-85No remainder, $(x - 1)$ is a factor 0 23-5 $2x^3 + x^2 - 8x + 5 = (x - 1)(2x^2 + 3x - 5)$ 2 3-5 0 $= (x - 1)(2x + 5)(x - 1)$ Solutions are $x = 1, x = -5/2, x = 1$
2.	using synthetic division for $x = 4$
	4 $\begin{vmatrix} 1 & -5 & 2 & 8 \\ 0 & 4 & -4 & -8 \\ 1 & -1 & -2 & 0 \end{vmatrix}$ No remainder, $(x - 4)$ is a factor $x^3 - 5x^2 + 2x + 8 = (x - 4)(x^2 - x - 2) = (x - 4)(x + 1)(x - 2)$ solutions are $x = 4$, $x = -1$, $x = 2$
3	using synthetic division for x = 1
	1 $\begin{vmatrix} 3 & 4 & -5 & -2 \\ 0 & 3 & 7 & 2 \\ \hline 3 & 7 & 2 & 0 \end{vmatrix}$ No remainder, $(x - 1)$ is a factor $3x^3 + 4x^2 - 5x - 2 = (x - 1)(3x^2 + 7x + 2)$ $= (x - 1)(3x + 1)(x + 2)$ solutions are $x = 1, x = -1/3, x = -2$
4	using synthetic division for x = 1
	1 $\begin{vmatrix} 2 & 5 & -4 & -3 \\ 0 & 2 & 7 & 3 \\ \hline 2 & 7 & 3 & 0 \end{vmatrix}$ No remainder, $(x - 1)$ is a factor $2x^3 + 5x^2 - 4x - 3 = (x - 1)(2x^2 + 7x + 3)$ $= (x - 1)(2x + 1)(x + 3)$ Solutions are $x = 1, x = -1/2, x = -3$
5	using synthetic division for $x = 2$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
6	using synthetic division for $x = 2$
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$