	Stationary Points	
1.	Find the coordinates of the stationary points for the curve $y = 2x^3 - 3x^2 - 12x + 20$ and determine their nature.	7
2.	$f(x)$ is defined by the formula $f(x) = x^3 - 3x + 2$. Find the stationary points for this function and determine their nature	7
3.	A curve has the equation $y = x^4 - 4x^3 + 3$ Algebraically find the coordinates of the stationary points and determine their nature	7
4.	(a) Find the coordinates of the stationary points of the graph with equation $y = x^3 + 3x^2 - 24x$ and determine their nature	7
	(b) Hence determine the range of values of <i>x</i> for which the function is strictly decreasing	2
5.	(a) Find the x coordinates of the stationary points on the graphs with equation $y = \frac{1}{3}x^3 - 2x^2 - 5x - 4$	4
	(b) Hence determine the range of values of x for which this graph is strictly increasing	2

	Stationary Points - Answers		
1	Differentiate the function	$\frac{dy}{dx} = 6x^2 - 6x - 12$	
	Set the derivative = 0	$6x^2 - 6x - 12 = 0$	
	Factorise	6(x+1)(x-2) = 0	
	Solve for <i>x</i>	x = -1, x = 2	
	Find values for y by substituting into th	e original function $y = 27, y = 0$	
	Use a nature table	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	State a conclusion	Maximum at (-1,27) Minimum at (2,0)	
2	Differentiate the function	$\frac{dy}{dx} = 3x^2 - 3$	
	Set the derivative = 0	$3x^2 - 3 = 0$	
	Factorise	3(x + 1)(x - 1) = 0	
	Solve for <i>x</i>	x = -1, x = 1	
	Find values for y by substituting into th	e original function $y = 4$, $y = 0$	

	Use a nature table	X	-1 ⁻ -1 -1 ⁺ 1 1 ⁺
		$\frac{dy}{dx}$	+ 0 - 0 +
	State a conclusion Maximum at	(-1,4)) Minimum at (1,0)
3	Differentiate the function	$\frac{d}{d}$	$\frac{y}{y} = 4x^3 - 12x^2$
	Set the derivative = 0 Factorise Solve for x	4 <i>x</i> 4 <i>x</i>	$x^{3} - 12x^{2} = 0$ $x^{2} (x - 3) = 0$ x = 0, x = 3 x = 2, x = -24
	Here a meture table	.1011	y = 3, y = -24
	ose a nature table	$\frac{dy}{dx}$	- 0 - 0 +
	State a conclusion Point of inflex	kion a	at (0,3) Minimum at (3,-24)
4	Differentiate the function	$\frac{d}{d}$	$\frac{y}{x} = 3x^2 + 6x - 24$
	Set the derivative = 0 Factorise Solve for <i>x</i> Find values for <i>y</i> by substituting into the original funct	3 <i>x</i> 3(; tion	$x^{2} + 6x - 24 = 0$ x + 4)(x - 2) = 0 x = -4, x = 2 y = 80, y = -28
	Use a nature table	$\frac{dy}{dx}$	-4 ⁻ -4 -4 ⁺ 2 2 ⁺ + 0 - 0 +
	State a conclusion Maximum at	<i>ax</i> (-4, 8	30) Minimum at (4,-24)
	State where the curve is decreasing (dy/dx) is negative	'e	-4 < <i>x</i> < 2
5	Differentiate the function	$\frac{d}{d}$	$\frac{y}{y} = x^2 - 4x - 5$
	Look for stationary points	x ² .	-4x - 5 = 0 + 1)(x - 5) = 0
	Stationary points at	(x x =	= -1, x = 5
	Use a nature table to identify the shape of the curve	$\frac{dy}{dx}$	-1 ⁻ -1 -1 ⁺ 5 5 ⁺ + 0 - 0 +
	State where the curve is increasing (dy/dx) is positive		x < -1 and $x > 5$