| Υ  | Q  | Р | LOGS                                                                                                                       |   |
|----|----|---|----------------------------------------------------------------------------------------------------------------------------|---|
| 15 | 6  | 1 | Evaluate log 12 + 1 log 27                                                                                                 | 3 |
|    |    |   | Evaluate $\log_6 12 + \frac{1}{3} \log_6 27$ .                                                                             | 3 |
| 16 | 10 | 1 | ,                                                                                                                          |   |
|    |    |   | The diagram below shows the graph of the function $f(x) = \log_4 x$ , where $x > 0$ .                                      |   |
|    |    |   | <i>y</i> 🛦                                                                                                                 |   |
|    |    |   | <b>†</b>                                                                                                                   |   |
|    |    |   | $f(x) = \log_4 x$                                                                                                          |   |
|    |    |   | 0 (1,0) x                                                                                                                  |   |
|    |    |   |                                                                                                                            |   |
|    |    |   | 1/                                                                                                                         |   |
|    |    |   |                                                                                                                            |   |
|    |    |   | The inverse function, $f^{-1}$ , exists.  On the diagram in your answer booklet, sketch the graph of the inverse function. | 2 |
|    |    |   | on the diagram in your answer bookiet, sketch the graph of the inverse function.                                           | 2 |
| 16 | 14 | 1 | (a) Evaluate $\log_5 25$ .                                                                                                 | 1 |
|    |    |   | (4) 2.444446 1083 251                                                                                                      |   |
|    |    |   | (b) Hence solve $\log_4 x + \log_4 (x - 6) = \log_5 25$ , where $x > 6$ .                                                  | 5 |
| 16 | 6  | 2 | Scientists are studying the growth of a strain of bacteria. The number of bacteria                                         |   |
|    |    |   | present is given by the formula                                                                                            |   |
|    |    |   | $B(t) = 200 e^{0.107t}$                                                                                                    |   |
|    |    |   |                                                                                                                            |   |
|    |    |   | where t represents the number of hours since the study began.                                                              |   |
|    |    |   | (a) State the number of bacteria present at the start of the study.                                                        | 1 |
|    |    |   | (b) Calculate the time taken for the number of bacteria to double.                                                         | 4 |
| 17 | 12 | 1 |                                                                                                                            |   |
|    |    |   | Given that $\log_a 36 - \log_a 4 = \frac{1}{2}$ , find the value of $a$ .                                                  | 3 |
| 17 | 9  | 2 |                                                                                                                            |   |
|    |    |   | Two variables, $x$ and $y$ , are connected by the equation $y = kx^n$ .                                                    |   |
|    |    |   | The graph of $\log_2 y$ against $\log_2 x$ is a straight line as shown.                                                    |   |
|    |    |   | $\log_2 y$                                                                                                                 |   |
|    |    |   | Ţ                                                                                                                          |   |
|    |    |   | 3                                                                                                                          |   |
|    |    |   |                                                                                                                            |   |
|    |    |   | $-12$ 0 $\log_2 x$                                                                                                         |   |
|    |    |   |                                                                                                                            |   |
|    |    |   | Find the values of $k$ and $n$ .                                                                                           | 5 |
|    |    |   |                                                                                                                            |   |

| 18 | 6  | 1 | Find the value of $\log_5 250 - \frac{1}{3} \log_5 8$ .                                                                                                                                                                                         | 3 |
|----|----|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 18 | 11 | 2 | The diagram shows the curve with equation $y = \log_3 x$ . $y = \log_3 x$ $(3,1)$ $x$                                                                                                                                                           |   |
|    |    |   | <ul> <li>(a) On the diagram in your answer booklet, sketch the curve with equation y = 1-log<sub>3</sub> x.</li> <li>(b) Determine the exact value of the x-coordinate of the point of intersection of the two curves.</li> </ul>               | 3 |
| 19 | 14 | 1 |                                                                                                                                                                                                                                                 |   |
|    |    |   | (a) Evaluate $\log_{10} 4 + 2\log_{10} 5$ .                                                                                                                                                                                                     | 3 |
|    |    |   | (b) Solve $\log_2(7x-2) - \log_2 3 = 5$ , $x \ge 1$ .                                                                                                                                                                                           | 3 |
| 19 | 9  | 2 | Electricity on a spacecraft can be produced by a type of nuclear generator. The electrical power produced by this generator can be modelled by $P_t = 120e^{-0.0079t}$ where $P_t$ is the electrical power produced, in watts, after $t$ years. |   |
|    |    |   | (a) Determine the electrical power initially produced by the generator.                                                                                                                                                                         | 1 |
|    |    |   | (a) Determine the electrical power initially produced by the generator.  (b) Calculate how long it takes for the electrical power produced by the generator                                                                                     | ' |
|    |    |   | to reduce by 15%.                                                                                                                                                                                                                               | 4 |

| Two variables, $x$ and $y$ , are connected by the equation $y = ab^x$ . The graph of $\log_4 y$ against $x$ is a straight line as shown. $\log_4 y$ $(3,8)$ Find the values of $a$ and $b$ . $22  2  1$ Evaluate $2\log_3 6 - \log_5 4$ . $22  8  1$ Solve $\log_6 x + \log_6 (x + 5) = 2$ , where $x > 0$ . $22  7  2$ Two variables, $x$ and $y$ , are connected by the equation $y = kx^a$ . The graph of $\log_5 y$ against $\log_5 x$ is a straight line as shown. $\log_5 y$ $(0,3)$ | 19 | 12 | 2 |                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|---|-------------------------------------------------------------------------|
| Find the values of $a$ and $b$ .  22 2 1 Evaluate $2\log_3 6 - \log_3 4$ .  23 3 Solve $\log_4 x + \log_6 (x+5) = 2$ , where $x > 0$ .  24 Two variables, $x$ and $y$ , are connected by the equation $y = kx^n$ . The graph of $\log_5 y$ against $\log_5 x$ is a straight line as shown.                                                                                                                                                                                                 |    |    |   | Two variables, $x$ and $y$ , are connected by the equation $y = ab^x$ . |
| Find the values of $a$ and $b$ .  22 2 1 Evaluate $2\log_3 6 - \log_3 4$ .  23 8 1 Solve $\log_6 x + \log_6 (x+5) = 2$ , where $x>0$ .  24 Two variables, $x$ and $y$ , are connected by the equation $y = kx^n$ .  The graph of $\log_5 y$ against $\log_5 x$ is a straight line as shown.                                                                                                                                                                                                |    |    |   | The graph of $\log_4 y$ against $x$ is a straight line as shown.        |
| 22 2 1 Evaluate $2\log_3 6 - \log_3 4$ . 3  22 8 1 Solve $\log_6 x + \log_6 (x+5) = 2$ , where $x > 0$ . 4  22 7 2 Two variables, $x$ and $y$ , are connected by the equation $y = kx^n$ . The graph of $\log_5 y$ against $\log_5 x$ is a straight line as shown. $\log_5 y$                                                                                                                                                                                                              |    |    |   | (3,8)<br>O                                                              |
| Evaluate $2\log_3 6 - \log_3 4$ . 3  22 8 1 Solve $\log_6 x + \log_6 (x+5) = 2$ , where $x > 0$ . 4  22 7 2 Two variables, $x$ and $y$ , are connected by the equation $y = kx^n$ . The graph of $\log_5 y$ against $\log_5 x$ is a straight line as shown.                                                                                                                                                                                                                                |    |    |   | Find the values of $a$ and $b$ . 5                                      |
| 22 7 2 Two variables, $x$ and $y$ , are connected by the equation $y = kx^n$ .  The graph of $\log_5 y$ against $\log_5 x$ is a straight line as shown. $\log_5 y$ $(0,3)$                                                                                                                                                                                                                                                                                                                 | 22 | 2  | 1 | Evaluate $2\log_3 6 - \log_3 4$ .                                       |
| The graph of $\log_5 y$ against $\log_5 x$ is a straight line as shown. $\log_5 y$ $(0,3)$                                                                                                                                                                                                                                                                                                                                                                                                 | 22 | 8  | 1 | Solve $\log_6 x + \log_6 (x+5) = 2$ , where $x > 0$ .                   |
| The graph of $\log_5 y$ against $\log_5 x$ is a straight line as shown. $\log_5 y$ $\log_5 x$                                                                                                                                                                                                                                                                                                                                                                                              | 22 | 7  | 2 | Two variables, $x$ and $y$ , are connected by the equation $y = kx^n$ . |
| $(0,3)$ $\log_5 x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |    |   |                                                                         |
| Find the values of $k$ and $n$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |    |   | $(0,3)$ $\log_5 x$                                                      |

|    | 140 |   |                                                                                                                                   |   |
|----|-----|---|-----------------------------------------------------------------------------------------------------------------------------------|---|
| 22 | 10  | 2 |                                                                                                                                   |   |
|    |     |   | The heptathlon is an athletics contest made up of seven events.                                                                   |   |
|    |     |   | Athletes score points for each event.                                                                                             |   |
|    |     |   | In the 200 metres event, the points are calculated using the formula                                                              |   |
|    |     |   | $P = 4.99087 (42.5 - T)^{1.81}$                                                                                                   |   |
|    |     |   | where ${\cal P}$ is the number of points awarded, and ${\cal T}$ is the athlete's time, in seconds.                               |   |
|    |     |   | (a) Calculate how many points would be awarded for a time of 24.55 seconds in the<br>200 metres event.                            | 1 |
|    |     |   | In the long jump event, the points are calculated using the formula                                                               |   |
|    |     |   | $P = 0.188807 (D - 210)^{k}$                                                                                                      |   |
|    |     |   | where ${\cal P}$ is the number of points awarded, ${\cal D}$ is the distance jumped, in centimetres, and ${\it k}$ is a constant. |   |
|    |     |   | (b) Given that 850 points are awarded for a jump of 600 cm, calculate the value of $\it k$ .                                      | 4 |
|    |     |   |                                                                                                                                   |   |