15 3 1 Show that $(x + 3)$ is a factor of $x^3 - 3x^2 - 10x + 24$ and hence factorise $x^3 - 3x^2 - 10x + 24$ fully. 16 15 1 The diagram below shows the graph with equation $y = f(x)$, where $f(x) = k(x-a)(x-b)^2$.	4
The diagram below shows the graph with equation $y = f(x)$, where $f(x) = k(x-a)(x-b)^2$.	
-5 O 4	
(a) Find the values of a , b and k . (b) For the function $g(x) = f(x) - d$, where d is positive, determine the range values of d for which $g(x)$ has exactly one real root.	3 of 1
values of a for which $g(x)$ has exactly one reactions.	•
16 3 2 (a) (i) Show that $(x+1)$ is a factor of $2x^3 - 9x^2 + 3x + 14$.	2
(ii) Hence solve the equation $2x^3 - 9x^2 + 3x + 14 = 0$.	3
17 2 2 (a) Show that $(x-1)$ is a factor of $f(x) = 2x^3 - 5x^2 + x + 2$.	2
(b) Hence, or otherwise, solve $f(x) = 0$.	3

18	15	1		
			A cubic function, f , is defined on the set of real numbers.	
			• $(x+4)$ is a factor of $f(x)$	
			• $x = 2$ is a repeated root of $f(x)$	
			• $f'(-2) = 0$	
			• $f'(x) > 0$ where the graph with equation $y = f(x)$ crosses the y-axis	
			Sketch a possible graph of $y = f(x)$ on the diagram in your answer booklet.	4
18	7	2	(a) (i) Show that $(x-2)$ is a factor of $2x^3 - 3x^2 - 3x + 2$.	2
			(ii) Hence, factorise $2x^3 - 3x^2 - 3x + 2$ fully.	2
			(.,,	_
19	10	2		
			(a) Show that $(x+3)$ is a factor of $3x^4 + 10x^3 + x^2 - 8x - 6$.	2
			(b) Hence, or otherwise, factorise $3x^4 + 10x^3 + x^2 - 8x - 6$ fully.	5
22	13	1		
			(a) (i) Show that $(x+2)$ is a factor of $f(x) = x^3 - 2x^2 - 20x - 24$.	2
			(ii) Hence, or otherwise, solve $f(x) = 0$.	3
			The diagram shows the graph of $y = f(x)$.	
			$y \neq \int y = f(x)$	
			0 x	
			(b) The graph of $y = f(x-k)$, $k > 0$ has a stationary point at (1,0).	
			State the value of k .	1