	Recurrence Relations		
1	A sequence is defined by the recurrence relation $U_{n+1} = \frac{1}{4}U_n + 11$		
	(a) If $U_2 = 8$, find U_3 (b) Explain why this sequence approaches a limit as $n \to \infty$ (c) Calculate this limit	1 1 2	
2	Two sequences are defined by the recurrence relations $U_{n+1} = 3U_n - 0.4$ with $U_0 = 1$, and $V_{n+1} = 0.3U_n + 4$ with $V_0 = 1$		
	 (a) Explain why only one of these sequences approaches a limit as n → ∞ (b) Find algebraically the exact value of this limit (c) For the other sequence find the smallest value of n for which the nth term exceeds 1000 	1 2 1	
3	A sequence is defined by the recurrence relation $U_{n+1} = 0.9U_n + 2$ with $U_0 = 3$		
	(a) Calculate the value of U_2 (b) What is the smallest value of <i>n</i> for which $U_n > 10$ (c) Find the limit of the sequence as $n \to \infty$		
		4	
4	A sequence is defined by the recurrence relation		
	$U_{n+1} = 0.5U_n + 3$ $U_{n+1} = aU_n + b$		
	(a) If $U_2 = 8$, $U_3 = 7$ and $U_4 = 6.5$, find values for a and b	3	
	(b) Find the limit of this sequence as $n \to \infty$	2	
5	A recurrence relation is defined by the formula $U_{n+1} = 0.6U_n + 24$		
	(a) Establish the limit of this sequence	2	
	(b) Given that U_1 is exactly half of this limit, find U_0 , the initial value of this sequence	2	
	(c) A second recurrence relation in the form $V_{n+1} = aU_n + b$ has the same limit as the sequence above and is such that $b = 90a$.		
	Find values for <i>a</i> and <i>b</i> for this second sequence	3	

	Recurrence - Answers	
1	Calculate value	$U_3 = 13$
	State condition for limit Find Limit	A limit exists as $-1 < \frac{1}{4} < 1$ L = $\frac{11}{1-0.25} = \frac{44}{3}$
2(a)	State condition for limit	A limit exists for V _n as -1 < 0.3 < 1
(b)	Find limit	$L = \frac{4}{1 - 03} = \frac{40}{7}$
(C)	Find <i>n</i>	<i>U</i> ₇ = 1749.8
3(a)	Calculate value	$U_2 = 6.23$
(b)	Find <i>n</i>	$U_6 = 10.965503$
(C)	State condition for limit Find Limit	A limit exists as $-1 < 0.9 < 1$ L = $\frac{2}{1-0.9}$ = 20
4(a)	Form simultaneous equations Solve for <i>a</i> Find b	$U_3 = aU_2 + b \rightarrow 7 = 8a + b$ $U_4 = aU_3 + b \rightarrow 6.5 = 7a + b$ 0.5 = a b = 3
(b)	State condition for limit Find Limit	A limit exists as -1 < 0.5 < 1 L = $\frac{3}{1-0.5}$ = 6
5(a)	Find Limit	$L = \frac{24}{1 - 0.6} = 60$
(b)	Calculate values for U_1 and U_0	$U_1 = 30, U_0 = 10$
(C)	Find limit in terms of <i>a</i> and <i>b</i> Subsitute for <i>b</i> and solve for <i>a</i> Solve for <i>b</i>	$L = \frac{b}{1-a} = 60$ $60 = \frac{90a}{1-a}, a = 0.4$ $b = 36, V_{n+1} = 0.4U_n + 36$