	Circles			
1	A and B are the points (-7,3) and (1,5).			
	If AB is a diameter of a circle, find the equation of this circle			
2	Two identical circles touch at the point $P(9,3)$ as shown below.			
	у Т			
	(9,3)			
	The circle to the left has equation $x^2 + v^2 - 10x - 4v + 12 = 0$.			
	Find the equation of the other circle			
3	Circle C ₁ has equation $(x - 5)^2 + (y - 4)^2 = 25$			
	Circle C ₂ has equation $x^2 + y^2 + 6x + 4y - 3 = 0$			
	(a) State the centre and radii of C1 and C2			
	(a) state the centre and radii of C1 and C2 (b) Show that circles C_4 and C_2 do not intersect			
	(b) show that circles C_1 and C_2 do not intersect			
4	Circle C ₁ has equation $(x - 3)^2 + (y + 2)^2 = 25$			
	Find the equation of the tangent at the point (6,2)			
5	Show that the line $y + x = 7$ is a tangent to the circle			
	$x^2 + y^2 - 4x - 2y - 3 = 0$ and determine the point of contact			
6	(a) Find the points of intersection P and Q of the line $y = 3y = 5$			
	and the circle C ₁ with equation $x^2 + v^2 + 2x - 4v - 15 = 0$			
	and the circle C_1 with equation $x + y + 2x - 4y - 13 = 0$			
	(b) T is the centre of circle C_{1} . Show that lines PT and QT are			
	perpendicular			
	(c) A second circle C ₂ passes through points P,Q and I.			
	Find the equation of C_2	3		

	Circles – Answers		
1	Find the midpoint	midpoint is (-3, 4)	
	Find the length of the radius	radius is $\sqrt{(-3-1)^2 + (4-5)^2} = \sqrt{17}$	
	Express as an equation	$(x + 3)^2 + (y - 4)^2 = 17$	
		· · · · · ·	
2	Centre and radius circle	(5.2) radius is v17	
	Using P as the midpoint betweer	n circles second circle has centre (13,4)	
	State equation of the circle	$(x - 13)^2 + (y - 4)^2 = 17$	
		· · · · ·	
3	Centre and radius for C ₁	(5,4) radius is 5	
	Centre and radius for C ₂	(-3, -2) radius is 4	
	Find distance between centres	vector from centre ₁ to centre ₂ $\binom{-8}{-6}$	
		distance is 10 units	
	State a conclusion	Total for radius ₁ + radius ₂ is 9 units < 10 units	
		Thus C_1 and C_2 do not intersect	
4	Find the centre of the circle	(3, -2)	
	State the gradient of the radius	$m_{\rm rad} = \frac{1}{3}$	
	Find the gradient of the tangent	$m_{tan} = -\frac{3}{4}$	
	State the equation of the tangen	4y = -3x + 26	
5	Substitute straight line $v = \frac{7-x}{2}$ into the circle		
	$x^{2} + (7 - x)^{2} - 4x - 2(7 - x) - 3 = 0$		
	Simplify $2x^2 - 16x + 32 = 0$		
	Factorise	2(x-4)(x-4) = 0	
	Proof	double root at <i>x</i> = 4, so line is tangent to the circle	
	Point of contact	(4, 3) substitute into the straight line not the circle	
6(a)	Subsitute straight line into circle	$x^2 + (3x - 5)^2 + 2x - 4(3x - 5) - 15 = 0$	
	Simplify	$10x^2 - 40x + 30 = 0$	
	Factorise and solve for x	10(x-1)(x-3)=0, $x = 1$ and $x = 3$	
	Find P and Q	P (1,-2) and Q(3,4)	
(b)	Centre of circle	Т (-1,2)	
	Gradient of PT and QT	$m_{\rm PT} = -2$, $m_{\rm QT} = \frac{1}{2}$	
	Proof	Since $m_{PT} \ge m_{QT} = -1$, PT is perpendicular to QT	
(c)	Circle Theorems		
	 PQT is a right-angled triangle where PQ is the hypotenuse PQ is the diameter of circle C₂, 		
	Midpoint of PO	centre of circle is (2, 1)	
	Length of radius	radius is V10	
	Equation of the circle	$(x-2)^2 + (y-1)^2 = 10$	