	Properties of the discriminant b ² - 4ac	
1	Find the range of values of p such that $x^2 - 2x + 3 - p = 0$ has no real roots	3
2	Prove that the roots of the equation $2x^2 + px - 3 = 0$ are real for all values of p	
3	Find the range of values of p such that $x^2 + px + 4 = 0$ has no real roots	4
4	Show algebraically that there is only one real root for $2x^3 - 3x^2 + 2x - 8 = 0$	5
5	Functions f and g are defined on suitable domains by f(x) = x(x - 1) + q and $g(x) = x + 3$	
	(a) Find an expression for $f(g(x))$	2
	(b) Hence, find the value of q such that the equation f(g(x)) = 0 has real roots	4
6	Given that the equation $x^2 + y^2 - 2px - 4py + 2p + 3 = 0$	
	Represents a circle, determine the range of values of p	5
7	(a) Write the equation $\cos 2\theta + 8\cos \theta + 9 = 0$ in terms of $\cos \theta$ and show that for $\cos \theta$ it has equal roots	3
	(b) Show that there are no real roots for $\boldsymbol{\theta}$	2

	Properties of the discriminant	– Answers	
1	Statement	for no real roots $b^2 - 4ac < 0$,	
	Form an inequality	$(-2)^2 - 4(1)(3-p) < 0, 4p - 8 < 0$	
	Solve for <i>p</i>	p < 2	
2	Statement	for real roots $b^2 - 4ac \ge 0$,	
_	Identify the discriminant	$(p)^2 - 4(2)(-3), p^2 + 24$	
	•	r^2 is positive for all values of p so roots are always real	
	P P		
3	Statement	for no real roots $b^2 - 4ac < 0$,	
	Form an inequality	$(p)^2 - 4(1)(4) < 0, p^2 - 16 < 0 $ \ (
	Factorise and solve for $= 0$	$(p+4)(p-4) = 0, \ p = \pm 4$	
	Correct range	p < -4 and $p > 4$	
4	Establish a real root using substitution or synthetic division		
	2 2 -3 2 -8	No remainder, $x = 2$ is a root, $(x - 2)$ is a factor	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$2x^3 - 3x^2 + 2x - 8 = (x - 2)(2x^2 + x + 4)$	
	2 1 4 0	$E_{0} = 2n^2 + n + 4 = 0 + k^2 + 4n = 1 + 16 + 15$	
	Due of	For $2x^2 + x + 4 = 0$, $b^2 - 4ac = 1 - 16 = -15$	
	Proof	$b^2 - 4ac < 0$ means no real roots	
5		Hence there is only one real root at $x = 2$	
3 (a)	Substitute $g(x)$ into $f(x)$	f(x+3) = (x+3)(x+3-1) + q	
(a)	Simplify	f(x + 3) = (x + 3)(x + 3 - 1) + q $x^2 + 5x + 6 + q$	
	Shipiny	x + 3x + 0 + q	
(b)	Statement	for real roots $b^2 - 4ac \ge 0$,	
(0)	Form an inequality	$(5)^2 - 4(1)(6+q) \ge 0$	
	Simplify the inequality	$1 - 4q \ge 0$	
	Solve for <i>p</i>	$1 \ge 4q, q \le \frac{1}{4}$	
	-		
6	$x^2 + y^2 - 2px - 4py + 2p + 3 =$: 0	
	Find values for g, f and c	g = p, f = 2 and c = 2p + 3	
	Use radius $r = \sqrt{g^2 + f^2 - c}$	$g^2 + f^2 - c > 0$	
	v	$p^{2} + 4p^{2} - (2p + 3) > 0$	
(L)	Form an inequality	$p^{2} + 4p^{2} - (2p + 3) > 0$ $5p^{2} - 2p - 3 > 0$, $(5p + 3)(p - 1) > 0$	
(b)	Simplify, factorise		
	Correct range	For $(5p+3)(p-1) = 0$,	
		p = -3/5 and $p = 1$	
		For $(5p+3)(p-1) > 0$, $p < -3/5$ and $p > 1$	
7(a)	Show substitution for $\cos 2\theta$	$2\cos^2\theta - 1 + 8\cos\theta + 9 = 0$	
, (a)	Collect terms	$2\cos^2\theta + 8\cos\theta + 8 = 0$	
	Identify the discriminant	$b^{2}-4ac = (8)^{2}-4(2)(8) = 0$ hence equal roots	
		0 - 4ac - (0) - 4(2)(0) - 0 hence equal 100ts	
(b)	Factorise	$2\cos^2\theta + 8\cos\theta + 8 = 0\#$	
		$2(\cos\theta + 2)^2 = 0$	
	Proof	$\cos\theta + 2 = 0$, $\cos\theta = -2$ has no solutions	
		· · · · · · · · · · · · · · · · · · ·	