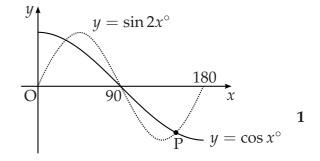
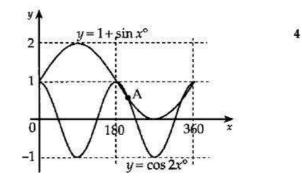
Exact Values (Non-Calculator)

[SQA] 1. (a) Solve the equation $\sin 2x^\circ - \cos x^\circ = 0$ in the interval $0 \le x \le 180$.


(*b*) The diagram shows parts of two trigonometric graphs, $y = \sin 2x^{\circ}$ and $y = \cos x^{\circ}$.


2. The diagram shows two curves with equations

 $y = \cos 2x^\circ$ and $y = 1 + \sin x^\circ$ where $0 \le x \le 360$.

Find the x-coordinate of the point of intersection at A.

Use your solutions in (*a*) to write down the coordinates of the point P.

[SQA] 3. Solve the equation $\sin 2x^\circ + \sin x^\circ = 0$, $0 \le x < 360$.

[SQA] 4.

[SQA]

- (a) Solve $\cos 2x^{\circ} 3\cos x^{\circ} + 2 = 0$ for $0 \le x < 360$.
 - (*b*) Hence solve $\cos 4x^{\circ} 3\cos 2x^{\circ} + 2 = 0$ for $0 \le x < 360$

5. How many solutions does the equation

$$(4\sin x - \sqrt{5})(\sin x + 1) = 0$$

Page 1

have in the interval $0 \le x < 2\pi$?

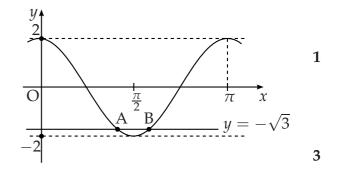
B. 3C. 2D. 1

hsn.uk.net

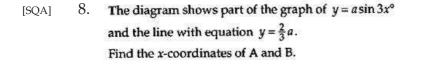
A. 4

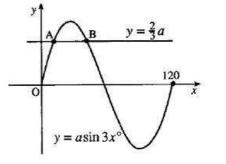
5

2

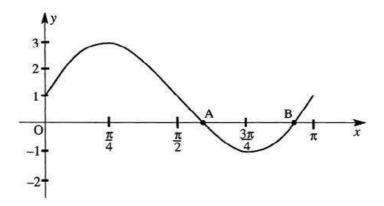

4

Higher Mathematics


4


4

- [SQA] 6. The diagram shows the graph of a cosine function from 0 to π .
 - (*a*) State the equation of the graph.
 - (*b*) The line with equation $y = -\sqrt{3}$ intersects this graph at point A and B. Find the coordinates of B.



[SQA] 7. Find the values of *t*, where $0 < t < 2\pi$, for which $4 \cos \left(2t - \frac{\pi}{4}\right)$ has its maximum value.

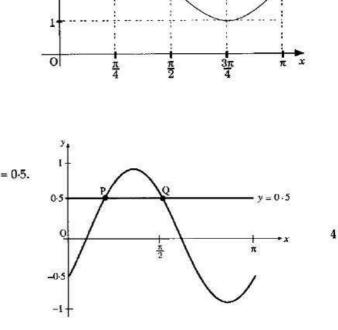
[SQA] 9. The diagram below shows the graph of $y = 2\sin 2x + 1$ for $0 \le x \le \pi$.

(a) Find the coordinates of A and B (as shown in the diagram) by solving an appropriate equation algebraically.
(b) The points (0, 2) and (π, 0) are joined by a straight line *l*. In how many points does *l* intersect the given graph ?
(c) C is the point on the given graph with an *x*-coordinate of π/2. Explain whether C is above, below or on the line *l*.
(3)

10. Solve $2\cos x = \sqrt{3}$ for *x*, where $0 \le x < 2\pi$.

- A. $\frac{\pi}{3}$ and $\frac{5\pi}{3}$ B. $\frac{\pi}{3}$ and $\frac{2\pi}{3}$ C. $\frac{\pi}{6}$ and $\frac{5\pi}{6}$
- D. $\frac{\pi}{6}$ and $\frac{11\pi}{6}$

[SQA] 11. Solve $2\sin 3x^{\circ} - 1 = 0$ for $0 \le x \le 180$.


[SQA] 12. Solve the equation
$$2\cos^2 x = \frac{1}{2}$$
, for $0 \le x \le \pi$.

- [SQA] 13. The diagram shows the graph of the function $y = a + b \sin cx$ for $0 \le x \le \pi$.
 - (a) Write down the values of a, b and c. (b) Find algebraically the values of x for which y = 2.5. 4 The diagram shows a sketch of the graph of y^{1}
- [SQA] 14. The diagram shows a sketch of the graph of $y = \sin(2x - \frac{\pi}{6}), \quad 0 \le x \le \pi$, and the straight line y = 0.5. These graphs intersect at P and Q.

Find algebraically the coordinates of P and Q.

[SQA] 15. Solve the equation
$$2\sin\left(2x - \frac{\pi}{6}\right) = 1, \ 0 \le x < 2\pi$$
.

hsn.uk.net

Questions marked '[SQA]' © SQA

All others © Higher Still Notes

4

3

2

4

Quest

2

[SQA] 16.

- (*a*) Using the fact that $\frac{7\pi}{12} = \frac{\pi}{3} + \frac{\pi}{4}$, find the exact value of $\sin\left(\frac{7\pi}{12}\right)$. 3
- (b) Show that sin(A + B) + sin(A B) = 2 sin A cos B.
- (c) (i) Express $\frac{\pi}{12}$ in terms of $\frac{\pi}{3}$ and $\frac{\pi}{4}$.
 - (ii) Hence or otherwise find the exact value of $\sin\left(\frac{7\pi}{12}\right) + \sin\left(\frac{\pi}{12}\right)$. 4

[END OF QUESTIONS]