Exact Values (Non-Calculator)

- [SQA] 1. (a) Solve the equation $\sin 2x^\circ \cos x^\circ = 0$ in the interval $0 \le x \le 180$.
 - (*b*) The diagram shows parts of two trigonometric graphs, $y = \sin 2x^{\circ}$ and $y = \cos x^{\circ}$.

and $y = \cos x^{\circ}$. Use your solutions in (*a*) to write down the coordinates of the point P.

Part	Marks	Level	Calc.	Content		Answer	U2 OC3
<i>(a)</i>	4	С	NC	T10		30, 90, 150	2001 P1 Q5
(b)	1	С	NC	Т3		$(150, -\frac{\sqrt{3}}{2})$	
 •¹ ss: use double angle formula •² pd: factorise •³ pd: process •⁴ pd: process 						• ¹ $2 \sin x^{\circ} \cos x^{\circ}$ • ² $\cos x^{\circ} (2 \sin x^{\circ} - 1)$ • ³ $\cos x^{\circ} = 0, \sin x^{\circ} = \frac{1}{2}$ • ⁴ 90, 30, 150	
•5	ic: inte	erpret gr	aph		or		
					• ³ sin $x^{\circ} = \frac{1}{2}$ and $x = 30,150$ • ⁴ cos $x^{\circ} = 0$ and $x = 90$		
						• ⁵ $\left(150, -\frac{\sqrt{3}}{2}\right)$	

[SQA] 2. The diagram shows two curves with equations $y = \cos 2x^\circ$ and $y = 1 + \sin x^\circ$ where $0 \le x \le 360$.

Find the x-coordinate of the point of intersection at A.

Part	Marks	Level	Calc.	Content	Answer	U2 OC3		
	1	С	NC	T10		1991 P1 Q20		
	3	A/B	NC	T10				
• ¹ • ² • ³ • ⁴	• $rac{1}{10}$ $rac{10}{10}$ $rac{10}{10}$ • $cos 2x^{\circ} = 1 + sin x^{\circ}$ • $2 sin^{2} x^{\circ} + sin x^{\circ} = 0$ • $sin x^{\circ} = 0 \text{ or } -\frac{1}{2}$							

Page 1

1

4

Higher Mathematics

Quest

[SQA] 3. Solve the equation $\sin 2x^\circ + \sin x^\circ = 0$, $0 \le x < 360$.

Part	Marks	Level	Calc.	Content	Answer	U2 OC3
	5	С	NC	T10		1996 P1 Q10
1 2 3 4 5	$2 \sin x \cos x$ $\sin x (2 \cos x)$ $\sin x = 0,$ 1st: x = 0, 2nd: x = 1	$x + \sin x =$ x + 1) = 0 $\cos x = -$ x + 180 x + 180 x + 180 x + 180 x + 1 + 10 x + 100 x + 10	= 0 1 2			

[SQA] 4.

(a) Solve $\cos 2x^{\circ} - 3\cos x^{\circ} + 2 = 0$ for $0 \le x < 360$.

5

(*b*) Hence solve $\cos 4x^{\circ} - 3\cos 2x^{\circ} + 2 = 0$ for $0 \le x < 360$

Part	Marks	Level	Calc.	Content	Answer	U2 OC3
<i>(a)</i>	5	С	NC	Τ7	x = 0,60,300	2011 P1 Q23
(b)	2	А	NC	T11	x = 0, 30, 150, 180, 210, 330	
•1 •2 •3 •4 •5 •6 •7	ss: kr formula ic: exp ss: star pd: red ic: pr domain ic: inte ic: inte	now to ress as a et to solv uce to ec cocess s erpret rel erpret pe	use d quadra quation solution lationsh eriodicit	louble angle atic in $\cos x^\circ$ in \cos only as in given hip with (a)	• ¹ $2\cos^2 x^\circ - 1$ • ² $2\cos^2 x^\circ - 3\cos x^\circ + 1 =$ • ³ $(2\cos x^\circ - 1)(\cos x^\circ - 1)$ • ⁴ $\cos x^\circ = \frac{1}{2}, 1$ • ⁵ 0,60,300 • ⁶ $2x = 0$ and 60 and 300 • ⁷ 0,30,150,180,210 and 330	0

5

5. How many solutions does the equation

$$(4\sin x - \sqrt{5})(\sin x + 1) = 0$$

have in the interval $0 \le x < 2\pi$?

- A. 4
- B. 3
- C. 2
- D. 1

Key	Outcome	Grade	Facility	Disc.	Calculator	Content	Source
В	2.3	С	0	0	NC	T7	2009 P1 Q11

- 6. The diagram shows the graph of a [SQA] cosine function from 0 to π .
 - (*a*) State the equation of the graph.
 - (*b*) The line with equation $-\sqrt{3}$ intersects this = y graph at point A and B.

Find the coordinates of B.

1

3

Part	Marks	Level	Calc	Content	Answer	U2 OC3
(<i>a</i>)	1	C	NC	T4	$\frac{1}{y = 2\cos 2x}$	2002 P1 O8
(b)	3	C	NC	T7	$\frac{1}{B(\frac{7\pi}{12},-\sqrt{3})}$	
• ¹ • ² • ³ • ⁴	ic: inte ss: equ pd: sol radians ic: inte	erpret gr ate equa lve line erpret re	aph al parts ar trig sult	equation in	• ¹ $2\cos 2x$ • ¹ $2\cos 2x = -\sqrt{3}$ • ² $2x = \frac{5\pi}{6}, \frac{7\pi}{6}$ • ³ $x = \frac{7\pi}{12}$	

Page 3

Quest

4

Part	Marks	Level	Calc.	Content	Answer	U2 OC3				
	4	С	NC	Τ7		1989 P1 Q15				
•1 0	$\bullet^1 \cos\left(2t - \frac{\pi}{4}\right) = 1$									
•2 2	• ² $2t - \frac{\pi}{4} = 0$									
• ³ t	$=\frac{\pi}{8}$									
•4	<u>π,9π</u>									

[SQA] 7. Find the values of *t*, where $0 < t < 2\pi$, for which $4\cos(2t - \frac{\pi}{4})$ has its maximum value.

[SQA] 8. The diagram shows part of the graph of $y = a \sin 3x^{\circ}$ and the line with equation $y = \frac{2}{3}a$. Find the x-coordinates of A and B.

Part	Marks	Level	Calc.	Content	Answer	U2 OC3
	4	С	NC	Τ7		1999 P1 Q14
• ¹ 4 • ² s • ³ 3 • ⁴ 1	$a \sin 3x = \frac{2}{3}$ $\sin 3x = \frac{2}{3}$ 3x = 41.8, 13.9, 46.1	a sta 138.2 (13	ated or in 38.2 state	nplied by • ² ed or implied by 46	5.1 in • ⁴ }	

(5)

(1)

[SQA] 9. The diagram below shows the graph of $y = 2\sin 2x + 1$ for $0 \le x \le \pi$.

- (a) Find the coordinates of A and B (as shown in the diagram) by solving an appropriate equation algebraically.
- (b) The points (0, 2) and $(\pi, 0)$ are joined by a straight line *l*. In how many points does *l* intersect the given graph?
- (c) C is the point on the given graph with an x-coordinate of π/2. Explain whether C is above, below or on the line *l*. (3)

Part	Marks	Level	Calc.	Content	Answer	U2 OC3
<i>(a)</i>	3	С	NC	Τ7		1993 P2 Q6
<i>(a)</i>	2	A/B	NC	T7		
(b)	1	С	NC	CGD		
(C)	3	A/B	NC	CGD		

(a)
$$\cdot^{1} 2 \sin 2x + 1 = 0$$

 $\cdot^{2} \sin 2x = -\frac{1}{2}$
 \cdot^{3} for any valid sol of equ. in form $\sin ax = -\frac{b}{c}$
 $\cdot^{4} (\frac{7\pi}{12}, 0)$
 $\cdot^{5} (\frac{11\pi}{12}, 0)$
(b) $\cdot^{6} 3$
(c) $\cdot^{7} y_{C} = 1$
 \cdot^{8} for a strategy to make a decision about C
 \cdot^{9} for making a consistent decision about C

- 10. Solve $2\cos x = \sqrt{3}$ for *x*, where $0 \le x < 2\pi$.
 - A. $\frac{\pi}{3}$ and $\frac{5\pi}{3}$
 - B. $\frac{\pi}{3}$ and $\frac{2\pi}{3}$
 - C. $\frac{\pi}{6}$ and $\frac{5\pi}{6}$
 - D. $\frac{\pi}{6}$ and $\frac{11\pi}{6}$

Key	Outcome	Grade	Facility	Disc.	Calculator	Content	Source
D	2.3	С	0	0	NC	T7, T2, T3	2011 P1 Q10

[SQA] 11. Solve $2\sin 3x^{\circ} - 1 = 0$ for $0 \le x \le 180$.

Part	Marks	Level	Calc.	Content	Answer	U2 OC3				
	4	С	NC	T7, T3		1989 P1 Q7				
• $\sin 3x^\circ = 0.5$										
• ² 3	x = 30, 150)								
• ³ x	• $x = 10,50$									
• ⁴ s	• ⁴ solution is 10,50,130									

[SQA] 12. Solve the equation $2\cos^2 x = \frac{1}{2}$, for $0 \le x \le \pi$.

Part	Marks	Level	Calc.	Content	Answer	U2 OC3
	3	С	NC	T7, T3		1990 P1 Q15
• ¹ •	$\cos x = \pm \frac{1}{2}$ $x = \frac{\pi}{3}$ $\frac{2\pi}{3}$					

Quest

2

3

Questions marked '[SQA]' © SQA

All others ⓒ Higher Still Notes

Higher Mathematics

Quest

[SQA] 13. The diagram shows the graph of the function $y = a + b \sin cx$ for $0 \le x \le \pi$.

- (a) Write down the values of a, b and c.
 (b) Find algebraically the values of x for which y = 2.5.
 - 3

Part	Marks	Level	Calc.	Content	Answer		U2 OC3
<i>(a)</i>	3	С	NC	T1			1994 P1 Q12
(b)	3	С	NC	T7, T3			
•1	<i>a</i> = 2	•4	2 + sin	$n 2x = 2\frac{1}{2}$	0.0	•4	$2+\sin 2x=2\frac{1}{2}$
•2	<i>b</i> = 1	•5	$2x = -\frac{1}{2}$	$\frac{\pi}{6}, \frac{5\pi}{6}$	OK	•5	$2x=\frac{\pi}{6}, \ x=\frac{\pi}{12}$
•3	<i>c</i> = 2	•6	$x = \frac{\pi}{12}$	$\frac{5\pi}{12}$ (0.262, 1.309)		•6	$2x = \frac{5\pi}{6}, x = \frac{5\pi}{12}$

[SQA] 14. The diagram shows a sketch of the graph of $y = \sin\left(2x - \frac{\pi}{6}\right), \quad 0 \le x \le \pi$, and the straight line y = 0.5. These graphs intersect at P and Q.

Find algebraically the coordinates of P and Q.

Part	Marks	Level	Calc.	Content	Answer	U2 OC3	
	4	С	NC	T7, T3		1996 P1 Q12	
•1	$\sin\left(2x-\frac{\pi}{6}\right)$)=0.5	stated	or implied by 2nd ma	rk		
•2	$\bullet^2 \qquad 2x - \frac{\pi}{6} = \frac{\pi}{6}$						
•3	$\bullet^3 2x - \frac{\pi}{6} = \frac{5\pi}{6}$						
•4	$\left(\frac{\pi}{6}, 0.5\right),$	$\left(\frac{\pi}{2}, 0.5\right)$					

Higher Mathematics

Quest

4

2

[SQA]	15. Solve the equation 2 sin	$\left(2x-\frac{\pi}{6}\right)$	$)=1,0\leq x<2\pi.$
-------	------------------------------	---------------------------------	---------------------

Part	Marks	Level	Calc.	Content	Answer	U2 OC3
	4	С	NC	T7, T3		1998 P1 Q9
.1 .2 .3 .4	$\sin\left(2x - \frac{\pi}{6}\right)$ $2x - \frac{\pi}{6} = \frac{\pi}{6}$ $x = \frac{\pi}{6}$ $x = \frac{\pi}{6}$	$=\frac{1}{2}$ $,\frac{5\pi}{6} (acce)$ $,\frac{\pi}{2}$ $,\frac{\pi}{5},\frac{3\pi}{2}$	ept 30, 1	50)	Alternative for 2nd and 3rd marks • ² $2x - \frac{\pi}{6} = \frac{\pi}{6}, x = \frac{\pi}{6}$ • ³ $2x - \frac{\pi}{6} = \frac{5\pi}{6}, x = \frac{\pi}{2}$	

[SQA] 16.

- (*a*) Using the fact that $\frac{7\pi}{12} = \frac{\pi}{3} + \frac{\pi}{4}$, find the exact value of $\sin\left(\frac{7\pi}{12}\right)$. 3
- (b) Show that sin(A + B) + sin(A B) = 2 sin A cos B.
- (c) (i) Express $\frac{\pi}{12}$ in terms of $\frac{\pi}{3}$ and $\frac{\pi}{4}$.
 - (ii) Hence or otherwise find the exact value of $\sin\left(\frac{7\pi}{12}\right) + \sin\left(\frac{\pi}{12}\right)$. 4

Part	Marks	Level	Calc.	Content Answer		U2 OC3
(<i>a</i>)	3	C	NC	Т8, Т3	$\frac{\sqrt{3}+1}{2\sqrt{2}}$	2009 P1 Q24
<i>(b)</i>	2	С	CN	T8	proof	
(C)	3	В	NC	T11	$\frac{\pi}{12} = \frac{\pi}{3} - \frac{\pi}{4}$]
(<i>c</i>)	1	С	NC	T11	$\frac{\sqrt{6}}{2}$ or $\sqrt{\frac{3}{2}}$	
•1 •2 •3 •4 •5 •6 •7 •8 •9	ss: exp ic: su pd: pro ic: sta ic: con ss: ide ic: sta ic: su pd: pro	pand com ostitute e ocess to a rt proof mplete p entify ste rt proces ostitute ocess	npound exact val single roof ps ss (ident	angle lues fraction :ify 'A' & 'B')	• $\frac{1}{1} \sin \frac{\pi}{3} \cos \frac{\pi}{4} + \cos \frac{\pi}{3} \sin \frac{\pi}{4}$ • $\frac{2}{2} \frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{2}} + \frac{1}{2} \times \frac{1}{\sqrt{2}}$ • $\frac{3}{2} \frac{\sqrt{3} + 1}{2\sqrt{2}}$ or equivalent • $\frac{4}{2} \sin A \cos B + \cos A \sin B + \frac{1}{2} - \frac{1}{2} + 1$	$+ \cdots$ A sin <i>B</i> and

[END OF QUESTIONS]