

	Logs - Answers		
1	Use laws of logs	$log_5 \frac{2 \times 50}{4} = log_5 25$	
	Simplify	$log_5 25 = log_5 5^2 = 2$	
2	Use laws of logs	$\log_{x}\left(\frac{6^{4}}{4^{2}}\right) = 1$	
	Use $\log_x a = b \rightarrow a = x^b$	$\frac{6^4}{4^2} = x^1$	
	Solve	$\frac{6\times6\times6\times6}{4\times4} = x^1, \frac{3\times3\times3\times3}{1\times1} = x^1, \ x = 81$	
3	Set up equation	$0 = \log_2(3x - 4) + 1,$ -1 = log ₂ (3x - 4)	
	Use $\log_2 a = b \rightarrow a = 2^b$ Solve	$2^{-1} = 3x - 4,$ $\frac{1}{2} = 3x - 4$ x = 3/2	
4	Use laws of logs	$\log_3\left(\frac{x^2-4}{x-2}\right) = 3$	
	Factorise and simplify	$\log_3\left(\frac{(x-2)(x+2)}{x-2}\right) = 3, \ \log_2(x+2) = 3,$	
	Use $\log_3 a = b \rightarrow a = 3^b$ Solve	$x + 2 = 3^3, x + 2 = 27$ x = 25	
5	using synthetic division for $x = 1$		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	No remainder so $x = 1$ is a root $0 = (x - 1)(x^2 + 9x + 20)$ 0 = (x - 1)(x + 4)(x + 5) solutions are $x = 1, x = -4, x = -5$	
	Use laws of logs Use $log_2 a = b \rightarrow a = 2^b$ Set = 0 Factorisation from (a)	$log_{2}(x + 3)(x^{2} + 5x - 4) = 3$ $log_{2}(x^{3} + 8x^{2} + 11x - 12) = 3$ $x^{3} + 8x^{2} + 11x - 12 = 2^{3}$ $x^{3} + 8x^{2} + 11x - 20 = 0$ (x - 1)(x + 4)(x + 5) = 0	
	Solutions from (a)Final answer $x = 1 a$	x = 1, $x = -4$, $x = -5as log function is undefined for x = -4 & -5$	
6	Find the equation of the straight line		
	Take log_2 of both sides for $y = kx^n$ Use laws of logs Compare with straight line to find <i>n</i> Compare with straight line to find <i>k</i>	$log_{2}y = log_{2} kx^{n}$ $log_{2}y = nlog_{2}x + log_{2} k$ $n = 3,$ $log_{2} k = 2 \text{ so } k = 2^{2} y = 4x^{3}$	
7	Find the equation of the straight line	$\log_4 y = \frac{1}{2} x + 1$	
	Take log4 of both sides for $y = ka^{3}$ Use laws of logs Compare with straight line to find <i>a</i>	$log_4y = xlog_4a + log_a k$ $l/2 = log_4a, a = 4^{1/2} = 2$	
	Compare with straight line to find <i>k</i>	$\log_4 k = 1 \text{ so } k = 4$ $y = 4(2^x)$	