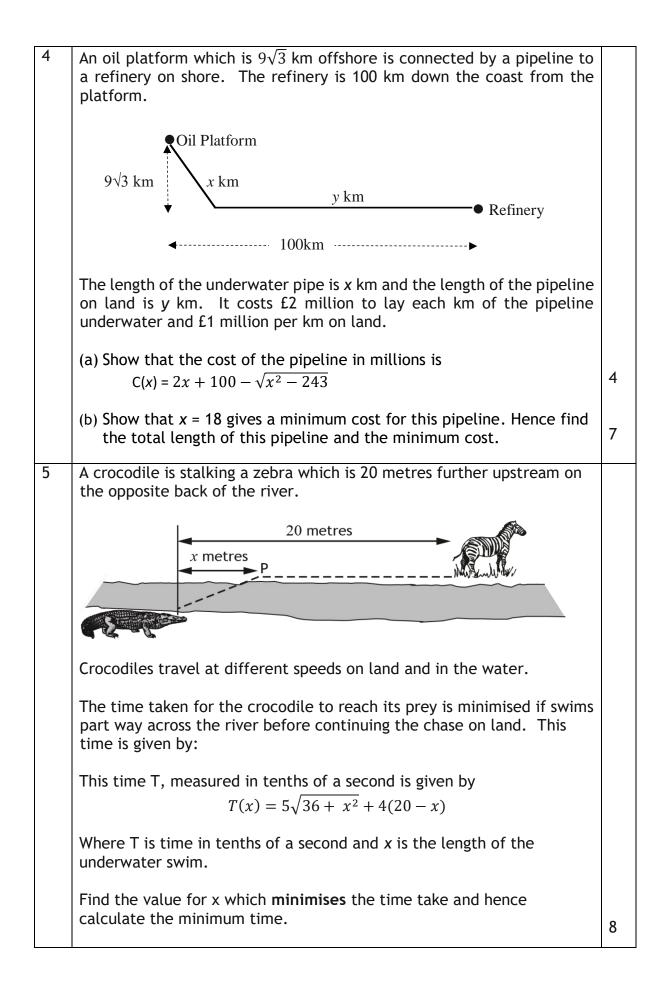
	Differentiation - Optimisation		
1.	A zoo keeper wants to fence off six individual pens.		
	Each pen is a rectanglewhich measures x metresby y metres as shown.		
	y metres		
	x metres (a) (i) Express the total length of fencing in terms of x and y		
	(ii) Given that the total length of fencing used is 360m, show that the total area A m ² of the six pens is given by $A(x) = 240x - \frac{16}{3}x^2$	4	
	(b) Find the values of <i>x</i> and <i>y</i> which give the maximum area and write down this maximum area	6	
2.	The owners of a zoo intend to build a new aviary. This is in the shape of a cuboid with a square floor. The top of the aviary measures x metres by x metres. The height of the aviary is h metres. The volume of the aviary will be 500 m ³		
	(a) Show that the area in square metres of netting needed for the five sides of the aviary is given by $A(x) = \frac{2000}{x} + x^2$		
	(b) Find the dimensions of the aviary which ensure that the cost of the netting is minimised and find the total amount of netting needed for this aviary.		
3	A flask is in the shape of a cylinder with a hemi-sphere for a lid. The radius of the cylindrical base is <i>r</i> cm The height of the cylinder if <i>h</i> cm.		
	The volume of the cylinder part of the flask is 400 cm ³ .		
	(a) Show that the surface area for the flask is given by $A(x) = 3\pi r^2 + \frac{800}{r}$		
	(b) Find the value of r which minimises the surface area.		
	Note the surface area of a hemisphere is $2\pi r^2$		



	Differentiation - Answers	
1	Form an expression for the fence	9y + 8x
	Form an expression for the area	$A = 2x \times 3y$
	Rearrange in terms fence in terms of x	$360 = 9y + 8x, \ y = \frac{1}{9}(360 - 8x)$
	Substitute into area expression	$2x \times 3\left(\frac{1}{9}(360 - 8x)\right)$
	=2x	$\times \left(120 - \frac{8}{3}x\right) = 240x - \frac{8}{3}x^2$
	Know to differentiate	A'(x) =
	Differentiate and set $= 0$	$240 - \frac{32}{3}x = 0$
	Solve for <i>x</i>	$x = 22.5^{3}$
	Use a nature table	x 22.5 ⁻ 22.5 22.5 ⁺
		$\frac{dy}{dx}$ + 0 -
		$\frac{1}{dx}$ + 0 -
	State values	$x = 22.5, y = 20, A = 2700 m^2$
2	Form an expression for the surface area	$SA = x^2 + 4xh$
	Form an expression for the volume	$\mathbf{V} = x^2 h$
	Rearrange volume in terms of h	$500 = x^2 h, h = \frac{500}{x^2}$
	Substitute into area expression	$SA = x^2 + 4x \left(\frac{500}{x^2}\right)$
		$=x^2 + \frac{2000}{x}$ as required
	Know to differentiate	A'(x) =
	Differentiate and set $= 0$	$2x - \frac{2000}{r^2} = 0$
	Solve for <i>x</i>	x = 10
	Use a nature table	$x = 10^{-10}$ $x = 10^{-10}$ 10 10^{+10}
		$\frac{dy}{dt}$ - 0 +
	State values	$x = 10 \text{ m}, \text{ h} = 5 \text{m}, \text{ A} = 300 \text{m}^2$
3	Form an expression for the surface area	$SA = \pi r^2 + 2\pi rh + 2\pi r^2$
	Form an expression for the volume	$V = \pi r^2 h, \ 400 = \pi r^2 h, \ h = \frac{400}{\pi r^2}$
	=	πr^2
	Substitute into area expression	$\mathrm{SA} = 3\pi r^2 + 2\pi r \left(\frac{400}{\pi r^2}\right)$
	L	$= 3\pi r^2 + \frac{800}{r}$ as required
		$-3\pi r$ $\pm \frac{1}{r}$ as required
	Know to differentiate	A'(x) =
	Complete differentiation $= 0$	$6\pi r - \frac{800}{r^2} = 0$
	Solve for <i>x</i>	x = 3.488. or $x = 3.5$

	Use a nature table	x 3.5 3.5 3.5 ⁺
		dv
		$\frac{dy}{dx} \mid - 0 +$
	State values	x = 3.5cm Area is $= 344$ m ²
4	Form an expression for cost	$\mathbf{C}(x) = 2x + \mathbf{y}$
	Use Pythagoras	$b^2 = x^2 - (9\sqrt{3})^2$ where $b + y = 100$
	Rearrange volume in terms of h	$b = \sqrt{x^2 - (9\sqrt{3})^2}$ where $y = 100 - b$
	Substitute into cost	$C(x) = 2x + 100 - \sqrt{x^2 - 243}$
	Express in differentiable form	$C(x) = 2x + 100 - (x^2 - 243)^{1/2}$
	Start differentiation	$2 - \frac{1}{2}(x^2 - 243)^{-0.5} \times 2x \dots$
	Complete differentiation	$2 - x(x^2 - 243)^{-0.5}$
	Substitute $x = 18$ into the derivative	C'(18) = 0, hence $x = 18$ is a min/max
	Use a nature table	x 18 ⁻ 18 18 ⁺
		$\frac{dy}{-0+}$
		dx
	State values $\mathbf{x} = 18 \text{ km}, \mathbf{y} = 91 \text{ km}$, length is 109km= 98, Cost is £127 million
5	Write the function in differentiable for	orm $T(x) = 5(36 + x^2)^{0.5} + 80 - 4x$
	Differentiate the composite function	$\frac{5}{2}(36 + x^2)^{-0.5} \times 2x$
	Complete differentiation and $= 0$	$5x(36 + x^2)^{-0.5} - 4 = 0$
	complete unterentiation and – 0	
	Solve for <i>x</i>	$\frac{5x}{(36+x^2)^{-0.5}} = 4,$
		$\frac{5x}{4} = (36 + x^2)^{0.5}$
		$\frac{\frac{4}{25x^2}}{\frac{16}{16}} = 36 + x^2, x^2 = 64, \ x = 8$
	Use a nature table	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		,
		$\frac{dy}{dx} \mid - 0 +$
	State values	x = 8m, T = 98 or 9.8 seconds