1. A sketch of the graph of y = f(x) where $f(x) = x^3 - 6x^2 + 9x$ is shown below. [SQA] The graph has a maximum at A and a minimum at B(3,0).

- (*a*) Find the coordinates of the turning point at A.
- (*b*) Hence sketch the graph of y = g(x) where g(x) = f(x + 2) + 4. Indicate the coordinates of the turning points. There is no need to calculate the coordinates of the points of intersection with the axes.
- (c) Write down the range of values of k for which g(x) = k has 3 real roots.

Part	Marks	Level	Calc.	Content	Answer	U1 OC3
(<i>a</i>)	4	С	NC	C8	A(1,4)	2000 P1 Q2
(<i>b</i>)	2	С	NC	A3	sketch (translate 4 up, 2	
					left)	
(C)	1	A/B	NC	A2	4 < k < 8	
•1 •2 •3 •4 •5 •6 •7	ss: kno pd: diff ss: kno pd: pro ic: inte ic: inte	ow to dif erentiate w gradi cess erpret tra erpret tra erpret sk	ferentia e correc ent = 0 ansform ansform etch	te tly ation ation	•1 $\frac{dy}{dx} = \dots$ •2 $\frac{dy}{dx} = 3x^2 - 12x + 9$ •3 $3x^2 - 12x + 9 = 0$ •4 $A = (1, 4)$ translate $f(x)$ 4 units up, 2 units •5 sketch with coord. of A'(- •6 sketch with coord. of B'(1) •7 $4 < k < 8$ (accept $4 \le k \le 1$	s left -1,8) ,4) 8)

sp

4

2

- [SQA] 2. A function *f* is defined by the formula $f(x) = (x 1)^2(x + 2)$ where $x \in \mathbb{R}$.
 - (*a*) Find the coordinates of the points where the curve with equation y = f(x) crosses the *x* and *y*-axes.
 - (*b*) Find the stationary points of this curve y = f(x) and determine their nature. 7

3

2

(*c*) Sketch the curve y = f(x).

Part	Marks	Level	Calc.	Conter	nt	Answer		U1 OC3				
<i>(a)</i>	3	С	NC	A6				1990 P2 Q1				
(b)	7	С	NC	C8								
(C)	2	C	NC	C10								
(a)	• ¹ $x =$:=1, -2										
	· ² (1.0	(1.0) and (-2.0)										
	3 10	(1,0) and (-2,0) (0,2)										
	• (0, .											
(b)	•4 f(x	$= x^3 - 3x$	+2									
0707	5	2	n mareki M									
	• 10	$f'(x) = 3x^2 - 3$										
	•° f'()	f'(x) = 0 stated explicitly										
	• ⁷ x =	1 and -:	1									
	• ⁸ x	-1 -	1 -1+	1 1	1+							
	f'(:	() + 0	-	- 0	+							
	• ⁹ ma	x at (-1, 4))									
	• ¹⁰ mi	nat (1.0)										
223												
(c)	•" cor	correct shape of sketch										
	• ¹² cor	rect anno	tation of	sketch(m	ax, min, 2 a	xes intersections)						

- [SQA] 3. (a) The diagram shows a part of the curve with equation $y = 2x^2(x-3)$. Find the coordinates of the stationary points on the graph and determine their nature.
 - (b) State the range of values of k for which y = k intersects the graph in three distinct points.

Part	Marks	Level	Calc.	Content	Answer	U1 OC3		
<i>(a)</i>	5	С	CN	C8		1991 P2 Q1		
(<i>b</i>)	2	С	CN	A1				
(a) $\cdot^{1} \frac{dy}{dx} = 6x^{2} - 12x$ $\cdot^{2} \frac{dy}{dx} = 0$ $\cdot^{3} x = 0, x = 2$ $\cdot^{4} x 0^{-} 0 0^{+} 2^{-} 2 2^{+}$ $\frac{dy}{dx} + - + + - +$ $\cdot^{5} \max \cdot at(0,0) \min at(2,-8)$								
(b)	k < 0 k < 0 k > -) -8						

[SQA] 4. A curve has equation $y = x^4 - 4x^3 + 3$.

- (*a*) Find algebraically the coordinates of the stationary points.
- (*b*) Determine the nature of the stationary points.

Part	Marks	Level	Calc.	Content	Answer	U1 OC3
<i>(a)</i>	6	С	NC	C8		1996 P2 Q1
(<i>b</i>)	2	С	NC	C8		
(a)	$\begin{array}{ccc} 1 & \frac{dy}{dx} = \\ 2 & 4x^3 \\ 3 & = 0 \\ 4 & e.g. \\ 5 & x = 0 \\ 6 & y = 3 \end{array}$	$-12x^{2}$ stated ex $4x^{2}(x-3)$ $3x^{2} = -24$	plicitly 3)			
(b)	• ⁷ x $\frac{dy}{dx}$ • ⁸ pt o min	0 0 - 0 f inflectio	$0^+ 3$ on at $x = 0$ x = 3	3 ⁺ 1		

6

- [SQA] 5. A curve has equation $y = -x^4 + 4x^3 2$. An incomplete sketch of the graph is shown in the diagram.
 - (a) Find the coordinates of the stationary points.
 - (b) Determine the nature of the stationary points.

Part	Marks	Level	Calc.	Content	Answer	U1 OC3					
<i>(a)</i>	6	С	CN	C8		1998 P2 Q2					
(b)	2	С	CN	C8							
(a)	(a) $\bullet^1 \frac{dy}{dx} = \dots$ stated or implied by \bullet^2										
	$-4x^3 + 12x^2$										
	$-4x^3 + 12x^2 = 0$ or $\frac{dy}{dx} = 0$ explicitly stated										
	• ⁴ $-4x^2(x-3)$ (accept $x^2(-4x+12)$)										
	• $x = 0$ and 3										
	• ⁶ y = ·	-2 and 2	25								
	7	0- 0	o ⁺	a a+							
(0)	• x dy	0 0	0	3 3							
	$\frac{dy}{dx}$										
	•8	+ 0	+	0 -							
	PI	at x = 0,	max	x at x = 3							

[SQA] 6. A curve has equation $y = 2x^3 + 3x^2 + 4x - 5$. Prove that this curve has no stationary points.

> Content Marks Calc. U1 OC3 Part Level Answer NC C8, C7 1999 P1 Q16 2 С A/B 3 C8, C7 NC $\frac{dy}{dy} = \dots$ $\frac{dy}{dx} = \dots$ • •1 OR • $6x^2 + 6x + 4$ $6x^2 + 6x + 4$ e.g. $b^2 - 4ac'' = \dots$ e.g. complete square..... .3 $S = 6\left(x + \frac{1}{2}\right)^2 + 2\frac{1}{2}$ $-60 \text{ or } -15 \text{ (from } 3x^2 + 3x + 2)$ •4 • $S \ge 2\frac{1}{2}$ so no st. points △ negative so no st. points .5

[SQA] 7. Find the coordinates of the turning points of the curve with equation $y = x^3 - 3x^2 - 9x + 12$ and determine their nature.

Part	Marks	Level	Calc.	Content	Answer U1 OC3
	8	С	CN	C8, C9	max. at (-1,17) and min. 2009 P2 Q1
					at (3, -15)
•1 •2 •3 •4 •5 •6 •7	ss: kno pd: diff ss: set pd: fact pd: solv pd: eva ss: kno points	ow to dif erentiate derivati orise ze for <i>x</i> luate <i>y</i> -c ow to,	ferentia e ve to ze coordina and ju	ite ro ates stify turning	•1 $\frac{dy}{dx} = \cdots$ (1 term correct) •2 $3x^2 - 6x - 9$ •3 $\frac{dy}{dx} = 0$ •4 $3(x+1)(x-3)$ •5 $x = -1$ or $x = 3$ •6 $y = 17$ or $y = -15$ •7 $\frac{x}{dy} + \frac{1}{2} + \frac{1}{$
•8	ic: inte	erpret re	sult		• ⁸ max. at $(-1, 17)$ and min. at $(3, -15)$

[SQA] 8. A function *f* is defined on the set of real numbers by $f(x) = (x - 2)(x^2 + 1)$.

- (*a*) Find where the graph of y = f(x) cuts:
 - (i) the *x*-axis;
 - (ii) the *y*-axis.
- (*b*) Find the coordinates of the stationary points on the curve with equation y = f(x) and determine their nature.
- (c) On separate diagrams sketch the graphs of:
 - (i) y = f(x);
 - (ii) y = -f(x).

Part	Marks	Level	Calc.	Content	Answer U1 OC3
<i>(a)</i>	2		CN	A6	(2,0), (0,-2) 2011 P1 Q22
(b)	8		CN	C8, C9	max: $(\frac{1}{3}, -\frac{50}{27})$, min:
					(1, -2)
(<i>ci</i>)	2		CN	A8, A7	sketch
(cii)	1		CN	A3	reflect in <i>x</i> -axis
•1 •2 •3 •4 •5 •6 •7 •8 •9 •10 •11 •12 •13	ic: inte ic: inte ic: wri ss: kno pd: con to 0 pd: fact pd: pro pd: eva ic: ju points ic: inte ic: cur and (b) v ic: cur annotate ic: cur	erpret <i>x</i> is erpret <i>y</i> is te in different to the indifference on the indifference on the indifference cess for luate <i>y</i> -or stify nation expret and expret and everpret and without ubic cont ts and ed ve from	intercep intercep ferentia d start to erivative rivative x coordina ature of ad state ving po annotat urve s statio (i) refle	ot ble form o differentiate re and equate e ates of stationary conclusions wints from (a) tion showing all mary points cted in <i>x</i> -axis	• ¹ (2,0) • ² (0,-2) • ³ $x^3 - 2x^2 + x - 2$ • ⁴ $3x^2$ • ⁵ $3x^2 - 4x + 1 = 0$ • ⁶ $(3x - 1)(x - 1)$ • ⁷ $\frac{1}{3}$ and 1 • ⁸ $-\frac{50}{27}$ and -2 • ⁹ $\frac{x}{f'(x)} + \frac{3}{1} \rightarrow \frac{1}{27} \rightarrow \frac{1}{27}$ • ¹⁰ max. at $(\frac{1}{3} - \frac{50}{27})$, min. at $(1, -2)$ • ¹¹ sketch • ¹² sketch • ¹³ reflected sketch

8

- [SQA] 9. The diagram shows part of the graph of the curve with equation $y = 2x^3 7x^2 + 4x + 4$.
 - (*a*) Find the *x*-coordinate of the maximum turning point.
 - (*b*) Factorise $2x^3 7x^2 + 4x + 4$.
 - (c) State the coordinates of the point A and hence find the values of x for which $2x^3 - 7x^2 + 4x + 4 < 0$.

Part	Marks	Level	Calc.	Content	Answer	U2 OC1
<i>(a)</i>	5	С	NC	C8	$x = \frac{1}{3}$	2002 P2 Q3
(b)	3	С	NC	A21	(x-2)(2x+1)(x-2)	
(C)	2	С	NC	A6	$A(-\frac{1}{2},0), x < -\frac{1}{2}$	
•1 •2 •3 •4 •5 •6 •7 •8 •9 •10	ss: knc pd: diff ss: knc pd: star pd: con ss: stra division ic: extr pd: con ic: inte ic: inte	w to dif erentiate w to set t solving plete so ategy fo cact quad plete th erpret th	ferentia e g proces olving p or cubic dratic fa ne cubic e factor e diagra	tive to zero ss of equation process , e.g. synth. actor factorisation s am	• ¹ $f'(x) = \dots$ • ² $6x^2 - 14x + 4$ • ³ $6x^2 - 14x + 4 = 0$ • ⁴ $(3x - 1)(x - 2)$ • ⁵ $x = \frac{1}{3}$ ··· $\begin{bmatrix} 2 & -7 & 4 \\ & \dots & \ddots \\ & & \ddots & \ddots \\ & & \ddots & \ddots \\ & & & &$	4 0

[SQA] 10. The diagram shows part of the graph of the curve with equation $f(x) = x^3 + x^2 - 16x - 16$.

(a)	Factorise $f(x)$.	(3)
(b)	Write down the co-ordinates of the four points where the curve crosses	10000
	the x and y axes.	(2)
		(6)

(c) Find the turning points and justify their nature.

Part	Marks	Level	Calc.	Conte	ent	Answer	U2 OC1				
<i>(a)</i>	3	С	NC	A21			1992 P2 Q1				
(<i>b</i>)	2	С	NC	A6							
(C)	6	С	NC	C8							
(a)	a) •1 any linear factor •2 corresponding quadratic factor •3 $f(x) = (x+1)(x-4)(x+4)$										
(b)	 4 For all 3 points on x-axis 5 (0,-16) 										
(c)	• ⁶ $f'(x) = 3x^2 + 2x - 16$ • ⁷ use $f'(x) = 0$ • ⁸ $x = 2$, and $x = -\frac{8}{3}$ • ⁹ $y = -36$, and $y = \frac{400}{27}(14.8)$ $\int \frac{-\frac{8}{7}}{27} - \frac{8}{7} - \frac{8}{7} + \frac{2}{7} - 2 + \frac{2}{7}$										
20	• ¹⁰ { <u>f'(;</u> • ¹¹ max	$(x) + \frac{1}{\sqrt{2}}$	$\frac{0}{\frac{400}{27}}$, m	 ·. ·. in at (2,	0 						

[SQA] 11. The function f, whose incomplete graph is shown in the diagram, is defined by $f(x) = x^4 - 2x^3 + 2x - 1$. Find the coordinates of the stationary points and justify their nature.

Part	Marks	Level	Calc.	Content		Answer	U2 OC1				
	8	С	CN	A21, C8			1993 P2 Q1				
•1 •2 •3 •4 •5 •6 •7	•1 for knowing to differentiate •2 $f'(x) = 4x^3 - 6x^2 + 2$ •3 for putting $f'(x) = 0$ •4 for factorising or checking zeros •5 $x = -\frac{1}{2}, x = 1$ •6 $y = -\frac{27}{16}, y = 0$ •7 completed nature table										
	x	$<-\frac{1}{2}$ -	$\frac{1}{2}$ >-	$\frac{1}{2}$ <1	1 >1						
	f'(x)	-ve 0	+26	? +ve	0 +0	e					
•8	• ⁸ (1,0) is pt. of inflexion, $\left(-\frac{1}{2}, -1\frac{11}{16}\right)$ is min t.p.										

- [SQA] 12. A function *f* is defined by the formula $f(x) = 4x^2(x-3)$ where $x \in \mathbb{R}$.
 - (*a*) Write down the coordinates of the points where the curve with equation y = f(x) meets the *x* and *y*-axes.
 - (*b*) Find the stationary points of y = f(x) and determine the nature of each.
 - (*c*) Sketch the curve y = f(x).
 - (*d*) Find the area completely enclosed by the curve y = f(x) and the *x*-axis.

Part	Marks	Level	Calc.	Content	Answer	U2 OC2
<i>(a)</i>	2	С	NC	A6		1989 P2 Q1
(<i>b</i>)	6	С	NC	C8		
(C)	2	С	NC	C10		
(<i>d</i>)	4	С	NC	C16		
(a) (b)	• ¹ (0,0) • ² (3,0) • ³ $f'(x)$ • ⁴ $f'(x)$ • ⁵ $x = 0$ • ⁶ $\frac{x}{f'}$ • ⁷ max • ⁸ min	$y = 12x^2 - \frac{1}{2}x^2 - \frac{1}$	24x ed explic 	$2^{-} 2 2^{+} - 0 +$	(c) • ⁹ correct shape • ¹⁰ (0,0), (3,0), (2,-16) and (d) • ¹¹ $\int_{0}^{3} (4x^{3} - 12x^{2}) dx$ • ¹² area = $-\int_{0}^{3} (4x^{3} - 12x^{2}) dx$ • ¹³ $[-x^{4} + 4x^{3}]_{0}^{3}$ • ¹⁴ 27	notated

[END OF QUESTIONS]

6

2