


High	er Maths Easter School Prelim – Paper 1	
1	Vectors p , q , and r are defined by	
	p = i + j - k, $q = i + 4k$, $r = 4i - 3j$	
	(a) Express $\boldsymbol{p} - \boldsymbol{q} + 2\boldsymbol{r}$ in component form	2
	(b) Find the components of the unit vector parallel to <i>r</i>	2
2	Find the equation of the perpendicular bisector of the straight line joining A(2,-1) and B(8,3)	4
3	State the rate of change of the function $f(x) = \sin(x) + 3x$, when $x = \frac{\pi}{3}$	3
4	Find k if $x - 2$ is a factor of $x^3 + kx^2 - 4x - 12$	2
5	State the gradient of the straight line in the diagram below $y + \frac{y}{150^{\circ}} + \frac{y}{x}$	2
6	Express $f(x) = 4x^2 + 8x - 5$ in the form $a(x+b)^2 + c$	3
7	Two functions f and g are defined on suitable domains by $f(x) = \frac{1}{x-4}$ and $g(x) = 2x+3$ (a) Find the inverse function $g^{-1}(x)$ (b) Find an expression for $f(g(x))$. Give your answer in the simplest form (c) State any restrictions on the domain of $f(g(x))$	1 2 1
8	In a right-angled triangle angle x is acute and is such that $\cos x = \frac{\sqrt{2}}{10}$. (a) Show clearly that the exact value of $\sin x$ is $\frac{7\sqrt{2}}{10}$.	
	(a) Show clearly that the exact value of $\sin x$ is $\frac{10}{10}$. (b) Hence show that $\sin(x+45)^\circ = 0.8$.	2
		3

9	(a) Find the coordinates of the stationary points for the function $f(x) = x^3 - 12x + 2$ and determine their nature		
	$f(x)=x^3-12x+2$ and determine their nature (b) Hence determine the range of values for x for which the function $f(x)$ is	7	
	strictly increasing	2	
10	Show that the straight line $y=10-2x$ is a tangent to the circle	4	
	$x^2 + y^2 + 2x - 4y - 15 = 0$		
11	The graphs of $y = f(x)$ and $y = g(x)$ intersect at point A on the y-axis as		
	shown in the diagram		
	$y \qquad \qquad y = g(x)$		
	y = f(x)		
	If $g(x) = 3x + 4$ and the derived function $f'(x) = 2x - 3$, find $f(x)$	4	
		4	
12	(a) Find the derivative of the function $f(x) = (8-x^3)^{1/2}$, $x < 2$	3	
	(b) Hence integrate $\int \frac{x^2}{(8-x^3)^{1/2}} dx$	2	
13	PQR is an equilateral triangle of side 2 units Q		
	$\vec{PO} = \boldsymbol{a}, \ \vec{PR} = \boldsymbol{b}, \ \vec{OR} = \boldsymbol{c},$		
	PQ = a, PR = b, QR = c,		
	Evaluate $\boldsymbol{\alpha} \bullet (\boldsymbol{b} + \boldsymbol{c})$ and hence identify	5	
	two vectors which are perpendicular		
	P k R		
14	(a) Given that $3\log_x y = \log_x y^2 + 2$, find a relationship		
	connecting x and y.	4	
	(b) Hence find the two values of y when $x = y - 2$.	2	
	END OF PAPER 1		
1		1	

SI

FORMULAE LIST

Circle

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$.

The equation $(x-a)^2 + (y-b)^2 = r^2$ represents a circle centre (a, b) and radius r.

Scalar Product: $a \cdot b = |a| |b| \cos \theta$, where θ is the angle between a and b.

Or
$$\boldsymbol{a} \cdot \boldsymbol{b} = \boldsymbol{a}_1 \boldsymbol{b}_1 + \boldsymbol{a}_2 \boldsymbol{b}_2 + \boldsymbol{a}_3 \boldsymbol{b}_3$$
 where $\boldsymbol{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $\boldsymbol{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$

Trigonometric formulae:

$$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos (A \pm B) = \cos A \cos B \mu \sin A \sin B$$

$$\sin 2A = 2 \sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A$$

$$= 2\cos^2 A - 1$$

$$= 1 - 2\sin^2 A$$

Table of standard derivatives:

<i>f</i> (<i>x</i>)	f'(x)
$\sin ax$	$a\cos ax$
$\cos ax$	$-a\sin ax$

Table of standard integrals:

f(x)	$\int f(x) dx$
$\sin ax$	$-\frac{1}{\cos ax+c}$
$\cos ax$	a
	$\frac{1}{a}\sin ax + c$