# Mathematics Higher Mini-Prelim Examination 2009/2010

NATIONAL

**QUALIFICATIONS** 

Assessing Unit 3 + revision from Units 1 & 2

Time allowed - 1 hour 10 minutes

## **Read carefully**

- 1. Calculators may be used in this paper.
- 2. Full credit will be given only where the solution contains appropriate working.
- 3. Answers obtained from readings from scale drawings will not receive any credit.

#### FORMULAE LIST

#### **Circle:**

The equation  $x^2 + y^2 + 2gx + 2fy + c = 0$  represents a circle centre (-g, -f) and radius  $\sqrt{g^2 + f^2 - c}$ . The equation  $(x - a)^2 + (y - b)^2 = r^2$  represents a circle centre (a, b) and radius r.

| Trigonometric formulae: | $\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$ |
|-------------------------|---------------------------------------------------|
|                         | $\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$ |
|                         | $\sin 2A = 2\sin A \cos A$                        |
|                         | $\cos 2A = \cos^2 A - \sin^2 A$                   |
|                         | $= 2\cos^2 A - 1$                                 |
|                         | $= 1 - 2\sin^2 A$                                 |

Scalar Product:  $a \cdot b = |a| |b| \cos\theta$ , where  $\theta$  is the angle between a and b.

\_\_\_\_

or

$$\boldsymbol{a} \cdot \boldsymbol{b} = \boldsymbol{a}_1 \boldsymbol{b}_1 + \boldsymbol{a}_2 \boldsymbol{b}_2 + \boldsymbol{a}_3 \boldsymbol{b}_3$$
 where  $\boldsymbol{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$  and  $\boldsymbol{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$ 

Table of standard derivatives:

| f(x)   | f'(x)        |
|--------|--------------|
| sin ax | $a\cos ax$   |
| cos ax | - $a\sin ax$ |

#### Table of standard integrals:

| f(x)      | $\int f(x)  dx$           |
|-----------|---------------------------|
| $\sin ax$ | $-\frac{1}{a}\cos ax + C$ |
|           | $\frac{-\sin ax}{a}$ + C  |

\_\_\_

#### **SECTION A**

In this section the correct answer to each question is given by one of the alternatives A, B, C or D. Indicate the correct answer by writing A, B, C or D opposite the number of the question on your answer paper.

Rough working may be done on the paper provided. 2 marks will be given for each correct answer.

- 1. The function  $f(x) = 2\sin x^\circ + \cos x^\circ$  has a **minimum** value of
  - **A** -2 **B** 0 **C** -3**D**  $-\sqrt{5}$
- 2. Which of the following is a correct assumption from the statement  $\log_b a = c$ ?
- 3. What is the value of  $\int_0^{\pi} \sin x \, dx$ ?

 $\begin{array}{rcrr}
 A & -2 \\
 B & +1 \\
 C & +2 \\
 D & 0 \\
\end{array}$ 

4. P and Q have position vectors  $\begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$  and  $\begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix}$  respectively.

The length of PQ is

- A 1
- **B**  $\sqrt{17}$
- $C \sqrt{21}$
- **D**  $\sqrt{13}$

- 5. Given that  $\cos P = \frac{1}{\sqrt{6}}$ , where  $0 , the value of <math>\cos 2P$  is
  - $A \qquad \frac{1}{\sqrt{3}}$  $B \qquad \frac{2}{\sqrt{6}}$  $C \qquad \frac{\sqrt{5}}{\sqrt{6}}$  $D \qquad -\frac{2}{3}$
- 6. An equation is such that  $\log x + \log(x+1) = \log 6$ , where x > 0.

The value of x is

- A
   2

   B
   1

   C
   3

   D
   6
- 7. The gradient of the tangent to the curve  $y = \sin x^\circ$  at the point where  $x = 60^\circ$  is

| A | $\frac{\sqrt{3}}{2}$ |
|---|----------------------|
| B | $\frac{1}{2}$        |
| С | $-\frac{1}{2}$       |
| D | 0                    |

- 8. Vectors *a* and *b* are such that |a| = |b| = 2 with *P* being the angle between the vectors.
  - If  $\boldsymbol{a} \cdot \boldsymbol{b} = 0 \cdot 8$ , the value of  $\cos P$  is
  - $\mathbf{A} \qquad 3 \cdot 2$
  - $\mathbf{B} \qquad 0\cdot 4$
  - $\mathbf{C} \qquad 0\cdot 2$
  - **D** 0.05



# [END OF SECTION A]

In the diagram below A, B and C have coordinates (-4,0,13), (6,-3,4) and (-6,1,12) respectively.

P lies on BC and has coordinates (-3,0,k)



A(-4,0,13)

- (a) Find the value of k.
- (b) Hence calculate the size of angle APB.
- 11. A formulae for mass decay is given as  $M_t = M_0 e^{-0.02t}$ , where t is time elapsed in hours,  $M_0$  is the initial mass in grams and  $M_t$  is the mass remaining after t hours.

How long will it take for an initial mass of 40 grams to decay down to 28 grams? **Give your answer correct to the nearest minute.** 

10.

9. A function is defined on a suitable domain as 
$$f(x) = \frac{-16}{(2x-1)^2}$$
.

(a) Show clearly that the derivative of this function can be written in the form

$$f'(x) = \frac{k}{(2x-1)^n}$$

and write down the values of k and n.

(b) Hence find x when f'(x) = 1 and x > 0.

4

3

3

5

5

12. If  $\frac{dy}{dx} = \sqrt{4x+1}$ , find an expression for y in terms of x given that y = 9.5 when x = 2.

5

2

13. Part of the graph of  $y = \sqrt{2} \cos x^\circ + \sqrt{2} \sin x^\circ$  is shown below.



- (a) Express  $y = \sqrt{2}\cos x^\circ + \sqrt{2}\sin x^\circ$  in the form  $y = k\cos(x-a)^\circ$ , where k > 0. 3
- (b) Hence state the coordinates of A and B rounding the coordinates to **3 significant figures** where necessary.
- (c) By solving the equation  $\sqrt{2}\cos x^\circ + \sqrt{2}\sin x^\circ = 1.7$ , find the coordinates of point C. 4

# [END OF SECTION B]

## [END OF QUESTION PAPER]