Mathematics Higher Mini-Prelim Examination 2010/2011

NATIONAL QUALIFICATIONS

Assessing Unit 3 + revision from Units 1 & 2

Time allowed - 1 hour 10 minutes

Read carefully

- 1. Calculators may be used in this paper.
- 2. Full credit will be given only where the solution contains appropriate working.
- 3. Answers obtained from readings from scale drawings will not receive any credit.

FORMULAE LIST

Circle:

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$.

The equation $(x-a)^2 + (y-b)^2 = r^2$ represents a circle centre (a,b) and radius r.

Trigonometric formulae:

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\sin 2A = 2\sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A$$

$$= 2\cos^2 A - 1$$

$$= 1 - 2\sin^2 A$$

Scalar Product:

 $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$, where θ is the angle between \mathbf{a} and \mathbf{b} .

or

$$\boldsymbol{a} \cdot \boldsymbol{b} = \boldsymbol{a}_1 \boldsymbol{b}_1 + \boldsymbol{a}_2 \boldsymbol{b}_2 + \boldsymbol{a}_3 \boldsymbol{b}_3$$
 where $\boldsymbol{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $\boldsymbol{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$

Table of standard derivatives:

f(x)	f'(x)
$\sin ax$	$a\cos ax$
$\cos ax$	$-a\sin ax$

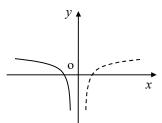
Table of standard integrals:

f(x)	$\int f(x) \ dx$
$\sin ax$ $\cos ax$	$-\frac{1}{a}\cos ax + C$ $\frac{1}{a}\sin ax + C$

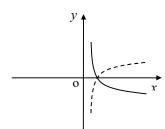
SECTION A

In this section the correct answer to each question is given by one of the alternatives **A**, **B**, **C** or **D**. Indicate the correct answer by writing **A**, **B**, **C** or **D** opposite the number of the question on your answer paper.

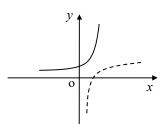
Rough working may be done on the paper provided. 2 marks will be given for each correct answer.

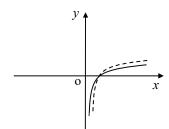

- 1. If $f(x) = (2x-1)^4$ then f'(1) equals
 - **A** 4
 - **B** 1
 - **C** 2
 - **D** 8
- 2. The **maximum** value of the function $g(x) = 3\sin x + 2\cos x$ is
 - $\mathbf{A} \qquad \sqrt{13}$
 - **B** 5
 - \mathbf{C} 0
 - **D** 2
- 3. The radius of the circle with equation $x^2 + y^2 + 4x 2y = 4$ is
 - **A** 2
 - **B** 3
 - **C** 1
 - $\mathbf{D} \qquad \sqrt{24}$
- 4. When $5\sin x^{\circ} + 3\cos x^{\circ}$ is written in the form $k\sin(x-\alpha)^{\circ}$ where $0 \le \alpha \le 360$, $\tan \alpha$ is equal to
 - A $\frac{5}{3}$
 - $\mathbf{B} \qquad -\frac{5}{3}$
 - $\mathbf{C} \qquad -\frac{3}{5}$
 - $\mathbf{D} \qquad \frac{3}{5}$

5. The value of $\log_{\sqrt{2}} 4$ is


2

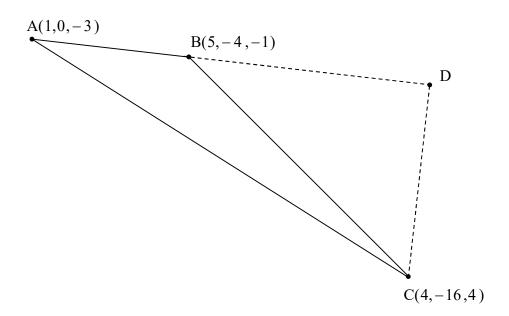
- A
- $\mathbf{B} \qquad 4\sqrt{2}$
- \mathbf{C} $\frac{1}{4}$
- **D** 4
- 6. Given that the vectors $\begin{pmatrix} 1\\4\\0 \end{pmatrix}$ and $\begin{pmatrix} p\\-2\\3 \end{pmatrix}$ are perpendicular, the value of p is
 - \mathbf{A} 0
 - **B** 8
 - **C** 4
 - **D** -6
- 7. Part of the graph of $y = \log_{10} x$ is shown in each diagram below as a broken line. Which diagram also shows, as a full line, part of the graph of $y = \log_{10} \frac{1}{x}$?


A


B

 \mathbf{C}

D


- 8. $a = \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ g \end{pmatrix}$ is a **unit** vector. Which of the following could be the value of g?
 - \mathbf{A} $\frac{1}{2}$
 - **B** 1
 - **C** -1
 - **D** $\frac{1}{\sqrt{2}}$

[END OF SECTION A]

SECTION B

ALL questions should be attempted

- 9. Triangle ABC has vertices A(1,0,-3), B(5,-4,-1) and C(4,-16,4) respectively.
 - A, B and D are collinear such that $\frac{AB}{BD} = \frac{2}{3}$.

- (a) Show that the coordinates of D are (11, -10, 2).
- (b) Hence show clearly that angle ADC is a right angle.
- (c) Prove that angle ABC is obtuse.

3

2

4

- 10. A function is defined as $f(x) = 6\cos^2 \frac{1}{2}x^\circ + \sqrt{3}\sin x^\circ$.
 - (a) By using the fact that $\cos^2 x^\circ = \frac{1}{2}(\cos 2x^\circ + 1)$ show clearly that this function can be expressed in the form

$$f(x) = 3\cos x^{\circ} + \sqrt{3}\sin x^{\circ} + 3.$$

3

- (b) Express $3\cos x^{\circ} + \sqrt{3}\sin x^{\circ} + 3$ in the form $k\cos(x-\alpha)^{\circ} + 3$ where $0 < \alpha < 360$ and k > 0.
- (c) Hence solve the equation f(x) = 0 for 200 < x < 360.
- 11. A function f is given by $f(x) = (x^2 + 3)^{1/2}$.
 - (a) Find f'(x) 3
 - (b) Find algebraically the values of x for which $f'(x) = \frac{1}{2}$.
- 12. Given that (x+1) and (x-3) are both factors of $2x^3 5x^2 + ax + b$, find a and b.
- 13. Solve $\log_3(x^2 4) \log_3(x 2) = 3$

[END OF SECTION B]

[END OF QUESTION PAPER]

<u>Higher Mini Prelim - Unit 3</u>

2010/2011 (Answers + Marking Scheme)

Section A - Answers

1 D 5 D 2 A 6 B 3 B 7 B 4 C 8 D

2 marks each (16 marks)

Section B - Marking Scheme

	Give 1 mark for each •		Illustration(s) for awarding each mark
9(a) (b)	• 1 valid method • 2 answer	(2 marks)	•¹ evidence of using stepping out/section formula •² $(11, -10, 2)$ •¹ $\overrightarrow{DA} = \begin{pmatrix} -10 \\ 10 \\ -5 \end{pmatrix}$
(c)	 •² finds DC •³ finds DA.DC •⁴ conclusion ans: proof •¹ finds BA and BC •² finds BA.BC •³ conclusion 	(3 marks)	• 2 $\overrightarrow{DC} = \begin{pmatrix} -7 \\ -6 \\ 2 \end{pmatrix}$ • 3 $\overrightarrow{DA}.\overrightarrow{DC} = 70 - 60 - 10 = 0$ • 4 since $\overrightarrow{DA}.\overrightarrow{DC} = 0$; $\angle ADC$ is right angled • 1 $\overrightarrow{BA} = \begin{pmatrix} -4 \\ 4 \\ -2 \end{pmatrix}$ $\overrightarrow{BC} = \begin{pmatrix} -1 \\ -12 \\ 5 \end{pmatrix}$ • 2 $\overrightarrow{BA}.\overrightarrow{BC} = 4 - 48 - 10 = -54$ • 3 scalar product < 0 so obtuse angle

	Give 1 mark for each •		Illustration(s) for awarding each mark
10(a)	ans: proof	(3 marks)	
	•¹ applies given info to new func	tion	$\bullet^1 \cos^2 \frac{1}{2} x^\circ = \frac{1}{2} (\cos x^\circ + 1)$
	• 2 knows to substitute in function	ı	$e^2 6[\frac{1}{2}(\cos x^{\circ} + 1)] + \sqrt{3}\sin x^{\circ}$
	• 3 simplifies to required form		• $^3 3(\cos x + 1)] + \sqrt{3} \sin x^\circ; 3\cos x + 3 + \sqrt{3} \sin x^\circ$
(b)	ans: $\sqrt{12\cos(x-30)^{\circ}+3}$	(3 marks)	
	• 1 finds k		$\bullet^1 \qquad k = \sqrt{9+3} = \sqrt{12}$
	• 2 finds tan α		\bullet^2 $\tan \alpha = \frac{\sqrt{3}}{3}$
	\bullet^3 finds α		\bullet^3 $\alpha = 30^\circ$
(c)	ans: 240°	(4 marks)	
	\bullet^1 equates to 0		$\bullet^1 \sqrt{12\cos(x-30)^{\circ} + 3} = 0$
	•² simplifies		$\bullet^2 \cos(x - 30)^0 = -\frac{3}{\sqrt{12}}$
	 finds values discards 		$x = 240^{\circ}; 360^{\circ}$ $4 240^{\circ}$
11(a)	ans: $\frac{x}{(x^2+3)^{1/2}}$	(3 marks)	
	•¹ use of chain rule		$\bullet^1 \frac{1}{2}(x^2+3)^{-1/2}$
	• ² differentiates bracket		\bullet^2 $2x$
	• 3 combines and simplifies		-3 $\frac{2x}{2(x^2+3)^{1/2}}$
(b)	ans: $x = \pm 1$	(3 marks)	
	• 1 equates derivative to $\frac{1}{2}$		$\bullet^1 \frac{x}{(x^2+3)^{1/2}} = \frac{1}{2}$
	• ² rearranges and squares		• $2x = (x^2 + 3)^{1/2}$: $4x^2 = x^2 + 3$
	• solves to answer		• $3x^2 = 3 : x^2 = 1 : x = \pm 1$
12	ans: $a = -4$; $b = 3$	(4 marks)	
	•¹ uses synthetic division to find		$\bullet^1 b-a=7$
	• uses synthetic division to find		b + 3a = -9
	 knows to use system of equations solves for a and b 	OHS	\bullet^3 evidence \bullet^4 $a = -4$; $b = 3$
			•

13(a) ans: $x = 25$ (5 marks) • 1 applies difference of logs • 2 exponentiates • 3 difference of two squares • 4 simplifies • 5 solves to answer Sect. B (34 marks) • 1 $\log_3 \frac{x^2 - 4}{x - 2} = 3$ • 2 $\frac{x^2 - 4}{x - 2} = 27$ • 3 $x^2 - 4 = (x + 2)(x - 2)$ • 4 $\frac{(x + 2)(x - 2)}{(x - 2)} = x + 2$ • 5 $x + 2 = 27$ Sect. B (34 marks) 16 + 34 Total: 50 marks		Give 1 mark for each ◆	Illustration(s) for awarding each mark
• exponentiates • a difference of two squares • a simplifies • a solves to answer • a $\frac{x^2 - 4}{x - 2} = 27$ • a $\frac{x^2 - 4}{x - 2} = 27$ • a $\frac{x^2 - 4}{x - 2} = 27$ • a $\frac{x^2 - 4}{x - 2} = 27$ • a $\frac{(x + 2)(x - 2)}{(x - 2)} = x + 2$ • a $\frac{(x + 2)(x - 2)}{(x - 2)} = x + 2$	13(a)	ans: $x = 25$ (5 mar	
		 applies difference of logs exponentiates difference of two squares simplifies solves to answer 	• $\log_3 \frac{x^2 - 4}{x - 2} = 3$ • $\frac{x^2 - 4}{x - 2} = 27$ • $\frac{x^2 - 4}{x - 2} = (x + 2)(x - 2)$ • $\frac{(x + 2)(x - 2)}{(x - 2)} = x + 2$ • $\frac{x + 2}{x - 2} = 27$