Marks 21 Triangle ABC has vertex A on the x-axis, as shown in the diagram. B and C are the points (-2, 6) and (-6, -2) respectively. B (-2, 6) The equation of AB is 6x + 7y - 30 = 0.1 (a) State the coordinates of A. <u>6x</u> λγ. -30 = 0+ (b) Find the equation of the altitude 3 of the triangle from A. (c) The altitude from A meets the 4 C (-6, -2) line BC at T. Find the coordinates of T. 22 The diagram shows a sketch of the 16 function y = f(x), with turning 14 points at (-2,10) and (2,-10) 12 10 (a) Copy the diagram and on it sketch 2 the graph of y = f(2x). -5 5 6 (b) On a separate diagram sketch 3 the graph of y = 1 - f(2x). -12 -14 -16 23 Find the range of values of k such that the equation $kx^2 - 2x + 3 = 0$ has no 4 real roots. (a) Using the fact that $\frac{5\pi}{12} = \frac{\pi}{4} + \frac{\pi}{6}$ find the exact value of $\cos\left(\frac{5\pi}{12}\right)$ 24 3 (b) Show that $\cos(A + B) + \cos(A - B) = 2\cos A \cos B$. (c) (i) Express $\frac{\pi}{12}$ in terms of $\frac{\pi}{4}$ and $\frac{\pi}{6}$ 2 (ii) Hence or otherwise find the exact value of $\cos\left(\frac{5\pi}{12}\right) + \cos\left(\frac{\pi}{12}\right)$ 4 END OF QUESTION PAPER 66

SECTION B ALL questions should be attempted.

PAPER 2

1	Find the coordinates of the turning points of the curve with equation $y = x^3 - 6x^2 - 15x + 2$ and determine their nature.	8
2	Functions f and g are given by $f(x) = 4x + 3$ and $g(x) = x^2 + 1$ (a) (i) Find $p(x)$ where $p(x) = f(g(x))$ (ii) Find $q(x)$ where $q(x) = g(f(x))$ (b) Solve $p'(x) = q'(x)$	3
3	(a) Show that $x = -1$ is a root of $x^3 + 4x^2 - 7x - 10 = 0$. (b) Hence factorise $x^3 + 4x^2 - 7x - 10$ fully.	4
4.	(a) Show that the point P(-3, 8) lies on circle C ₁ with equation $(x-2)^2 + (y-3)^2 = 50$ P(-3,8)	1
	 (b) PQ is a diameter of this circle as shown in the diagram. Find the equation of the tangent at Q. (c)Two circles C₂ and C₃ touch C₁ at Q. 	5
	The radius of each of these circles is twice the radius of circle C_1 . Find the equations of circles C_2 and C_3 .	4
5.	(a) The terms of a sequence satisfy $u_{n+1} = ku_n + 6$. Find the value of k which produces a limit of 4.	
	(b) A sequence satisfies the recurrence relation $u_{n+1} = mu_n + 6$, $u_0 = 4$.	
	 (i) Express u₁ and u₂ in terms of <i>m</i>. (ii) Given that u₂ = 10, find the value of <i>m</i> which produces a sequence with no limit. 	

6.	Solve the equation $2\cos 2x^\circ + 3\sin x^\circ = \sin^2 x^\circ$, in the interval	~
	$0 \le x \le 360^\circ$ correct to 1 decimal place.	5
7.	An open box measures internally x units by 2x units by h units and has an inner surface area of 18 units ² h x $2x$	
	(a) show that the Volume, V units , of the cuboid is given by $V = \frac{2}{3}x(9-x^2)$	3
	(b) Find the exact value of x for which this volume is a maximum	5
8.	The diagram shows a curve with equation $y = x^3 - 7x + 6$ and the line with equation $y = 2x + 6$ (a) Find the points of intersection of curve and the line.	
	$y = x^3 - 7x + 6$ $y = 2x + 6$ x	9
	(b) Calculate the total shaded area.	
	END OF QUESTION PAPER	60

Answers Paper 1 Section B		
$\frac{21}{2000}$	• ¹ interpret x-intercept	•1 A = (5,0)
P1 O21	\bullet^2 find gradient of BC	e^2 mag= 2
amended	\bullet^3 know to use $m_1 \times m_2 = -1$	$a^{3} m_{AT} = -\frac{1}{2}$
8 C	 state equation of the altitude AT 	• $y - 0 = -\frac{1}{2}(x - 5), 2y = -x + 5$
	 state equation of line BC prepare to solve simultaneous equat solve for x solve for y 	• ⁵ y - 6 = 2(x + 2), y = 2x + 10 • ⁶ 2(2x + 10) = -x + 5 etc • ⁷ x = -3 • ⁸ y = 4
22 2009 P1 Q22 amended	 ¹ scaling parallel to the x-axis ² annotate graph 	 3 points (-1,10), the origin, (1,10) ¹ sketch and mark on point ² other two points correct
5 B	• ³ correct order – reflection, translation	 3 points (-1,-9), (0,1), (1,11) ³ reflect in x-axis, vertical translation
	• ⁴ start to annotate	• ⁴ sketch and mark one point
	• ⁵ complete annotation	• ⁵ two final points marked
23 2007 P1 Q4 Amended 4 C	 ¹ know to use discriminant < 0 for no real roots ² interpret the values of a, b and c ³ substitute ⁴ solve an inequation 	• $b^{2} - 4ac < 0$ • $a = k, b = -2, c = 3$ • $4 - 12k < 0$ • $k > \frac{1}{3}$
24 2009 P1 Q24	 •¹ expand compound angle •² substitute exact values 	• $\cos\frac{\pi}{4}\cos\frac{\pi}{6} - \sin\frac{\pi}{4}\sin\frac{\pi}{6}$ • $\frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}} \times \frac{1}{2}$
Amended 6 C 3 B	 ³ process to a single fraction 	• $\sqrt[3]{\frac{\sqrt{3}-1}{2\sqrt{2}}}$ • $4 \cos A \cos B - \sin A \sin B + \dots$
	• ⁴ start proof	• ⁵ $\cos A \cos B - \sin A \sin B$
	● ⁵ complete proof	
	• ⁶ identify steps	• ⁶ $\left(\frac{\pi}{12}\right) = \left(\frac{\pi}{4} - \frac{\pi}{6}\right)$
	\bullet^7 identify A and B	• ⁷ $A = \frac{\pi}{4}, B = \frac{\pi}{6}$ • ⁸ o 1 $\sqrt{3}$
	• ⁸ Substitute in 2cosAcosB	$ \sum_{i=1}^{n} \frac{2 \times \frac{1}{\sqrt{2}} \times \frac{1}{2}}{2} $

HIGHER MATHS JANUARY PRELIM MARKING SCHEME

	● ⁹ process	• 9 $\frac{\sqrt{3}}{\sqrt{2}}$
Answers - H	Paper 2	
1 2009 Q1	• ¹ know to differentiate	• $\frac{dy}{dx} = \dots$ (1 term correct)
amended 8 C	• ² differentiate	• $3x^2 - 12x - 15$
	\bullet^3 set derivative to zero	• ³ $\frac{dy}{dx} = 0$, STATED EXPLICITLY
	• ⁴ factorise	• ⁴ $3(x+1)(x-5) = 0$
	● ⁵ solve for x	• $x = -1$, $x = 5$
	● ⁶ evaluate y coordinates	•° $y = 10, y = -98$
	• ⁷ justification (nature table)	• ⁷ $< -1 > < 5 >$ +tye 0 -tye 0 +tye
	● ⁸ interpret results	• ⁸ max at (-1.10) min at (598)
2	● ¹ substitute for g(x) in f(x)	• $f(x^2+1)$
2009	• ² complete	• ² $4(x^2+1)+3$
Q2 amended	\bullet^3 sub and complete for q(x)	• ³ $(4x+3)^2+1$ • ⁴ • ⁵
60	• ⁴ simplify	• $4x^2+7$ 8x
00	● ⁵ differentiate	• $5 16x^2 + 24x + 10 82x + 24$
	● ⁶ solve	$\bullet^6 x = -1$
3	•1 know to use synthetic division	• ¹ -1 1 4 -7 -10
2009 Q3 amended 5 C	with x = -1, or use f(-1) = 0	1 3 -10 0
	• ² no remainder	 no remainder, so x=-1 is a root 0 can be highlighted or in bold
	• ³ complete quadratic factor	• ³ $(x + 1)(x^2 + 3x - 10)$
	● ⁴ factorise fully	• ⁴ $(x+1)(x+5)(x-2)$ stated explicitly
4. 2009 Q4	● ¹ substitute	• ¹ $(-3-2)^2 + (8-3)^2 = 50$
amended	• ² find centre	• ² centre = (2,3)
	• ³ use midpoint for Q	● ³ Q= (7,-2)
6 C 4 A	• ⁴ find gradient of radius	• ⁴ $m_{rad} = -1$

	• ⁵ find gradient of tangent	• ⁵ $m_{tan} = 1$
	• ⁶ state equation of tangent	• ⁶ $y - (-2) = 1(x - 7),$
		y = x - 9
	• ⁷ state radius	\bullet^7 radius = $2 \times \sqrt{50} = 10\sqrt{2}$
	• ⁸ know how to find centre	\bullet^8 centre (17 -12)
	• ⁹ equation of one circle	$e^{9}(x+3)^{2} + (x-8)^{2} = 200$
	\bullet^{10} equation of the other circle	$(x + 3)^{2} + (y + 12)^{2} = 200$
		• (X = 17) + (y + 12) = 200
5.	● ¹ know to find limit	6
2005 P1		$\bullet^1 4 = \frac{1-k}{1-k}$
Q6	● ² process	\bullet^2 k = - $\frac{1}{2}$
amended		
20	• ³ interpret recurrence relation	• 3 U ₁ = 4m + 6
2 C	• ⁴ interpret recurrence relation	\bullet^4 U ₂ = m(4m+6)+6 = 4m ² + 6m + 6
3 D	• ⁵ arrange in standard form = 0	\bullet^5 4m ² + 6m + 6 = 10.
		$4m^2 + 6m - 4 = 0$
	● ⁶ factorise	\bullet^6 2(2m - 1)(m + 2)
	• ⁷ use limit conclusion	• ⁷ m = -2
	for no limit $m \leq -1$, $m \geq 1$ m	
6. 2008 P2	• ¹ use double angle formula	$e^1 = \cos^2 r - 1 - 2\sin^2 r$
Q5	\bullet^2 obtain standard form (=0)	$\begin{array}{c} \bullet \\ 2 \\ 2 \\ 2 \\ 5 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$
amended	• ³ factorise	$ \sum_{x=1}^{\infty} 2x - 3\sin x - 2 = 0 $
		• $(5\sin x + 2)(\sin x - 1) = 0$
5 B	• ⁴ process factors	• $\sin x = -\frac{2}{x}, x = 203.6^{\circ}.336.4^{\circ}$
		5
	● ⁵ complete solution	• ⁵ $\sin x = 1, x = 90^{\circ}$
7.0004		
7.2004 P2.00	• use area facts	• $A = 4xh + 2xh + 2x^2 = 18$
P2 Q9	• ² use volume facts	• ² $V = 2x \times x \times h$
amended	• ³ complete proof	$(9-x^2)$
5 C		• $V = 2x \times \left(\frac{3x}{3x}\right) = \text{ and complete}$
3 A		2
		$\bullet^4 V = 6x - \frac{2}{2}x^3$
	• arrange in standard form	3
	-5	$\bullet^5 \frac{dV}{dt} = 6 - 2x^2$
	• differentiate	dx
		• $dV = 0$ STATED EXPLICITLY before
	• set derivative to zero	dx
	-7	factorisation
	• process	• ⁷ $x = \sqrt{3}$
	• ⁸ justification nature table	
	 Justification – nature table 	• ⁸ nature table $<\sqrt{3}$ $\sqrt{3}$ $>\sqrt{3}$
		maximum +tve 0 -tve

8. 2011 P2	• ¹ Know to equate line and curve	• $x^3 - 7x + 6 = 2x + 6$
Q4 amended	• ² factorises equation	• ² $x(x-3)(x+3)=0$
12 B		Have accepted x(x ² - 9)=0
	• ³ solves and finds coordinates	• ³ (0,6), (-3, 0, and (3,12)
	● ¹ Know to integrate	• ¹ $\int \dots$ or attempt integration
	• ² know to deal with areas on each side of the y-axis	$\bullet^2 \bullet^3$ 0
	● ³ interpret limits on one or both areas	0 -3
	 ⁴ use "upper – lower" on one or both integral 	• ⁴ (2x+6) -(x^3 -7x+6) (x^3 -7x+6) - (2x+6) - x^3 + 9x x^3 - 9x
	● ⁵ integrate	• 5 $-\frac{x^{4}}{4} + \frac{9x^{2}}{2}$ $\frac{x^{4}}{4} - \frac{9x^{2}}{2}$
	• ⁶ substitute in limits	$\bullet^{6} \left(-\frac{3^{4}}{4} + \frac{9 \times 3^{2}}{2} \right) - 0 0 - \left(\frac{3^{4}}{4} - \frac{9 \times 3^{2}}{2} \right)$
	 ⁷ & ●⁸ evaluate the area of one or both sides ⁹ state total area 	• ⁷ $\frac{81}{4}$ • ⁸ $\frac{81}{4}$ Allow -81/4 \rightarrow area = 81/4units ² • ⁹ $\frac{81}{2}$
	For a statement that the graph is symmetrical so total area = 2 x area 1 Have given $\bullet^2 \bullet^9$ but not \bullet^8	For so total area = 2 x area 1 with no mention of symmetry Have given \bullet^9 but not \bullet^2 or \bullet^8

TOTAL 60