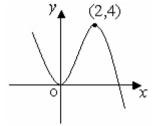
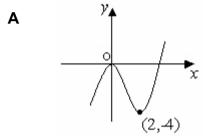

Section A All questions should be attempted

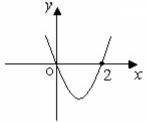
- 1. P and Q are the points (2,3) and (-1,4). What is the gradient of the line perpendicular to PQ?
 - **A** $-\frac{8}{7}$ **B** 3 **C** 5

7

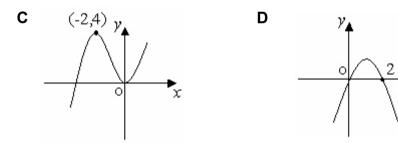
- D
- 2. f(x) = 2x 1 and g(x) = 2x + 1 are functions defined on the set of real numbers. Find an expression for f(g(x)).
 - **A** $f(g(x)) = 4x^2 1$
 - **B** $f(g(x)) = 4x^2$
 - **C** f(g(x)) = 4x
 - **D** f(g(x)) = 4x + 1
- 3. Which of the sketches shown below is most likely to represent the graph of $y = 3x^2 7x + 4$?




4. If $f(x) = 6x^3 - 2x^{-\frac{1}{2}}$ then the derivative, f'(x) is

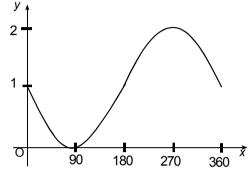

- **A** $18x^2 + x^{-\frac{3}{2}}$
- **B** $2x^2 + 4x^{\frac{1}{2}}$
- **C** $6x^2 x^{-\frac{3}{2}}$
- **D** $18x^2 + x^{\frac{1}{2}}$

- 5. PQ is the diameter of a circle. P and Q have the coordinates (3,2) and (7,2) respectively. What is the equation of the circle?
 - $(x-3)^2 + (y-2)^2 = 16$ $(x-4)^2 + y^2 = 2$ Α
 - В
 - $(x+5)^{2} + (y+2)^{2} = 2$ (x-5)² + (y-2)² = 4 С
 - D
- Part of the graph of y = f(x) is shown opposite. 6.


The graph of the derivative, y = f'(x) could be represented by,

x

What is the remainder on dividing the polynomial $5x^3 - 4x + 8$ by x - 2? 7.

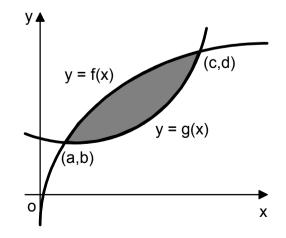

В

- Α -24
- В 0
- С 8
- D 40

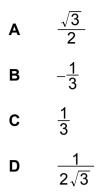
Find $\int_{-1}^{1} x^4 dx$ 8.

- 0 Α
- $\frac{1}{4}$ В
- <u>2</u> 5 С
- 8 D

- 9. The quadratic equation $4kx^2 8x + k = 0$ has equal roots. The value of *k*, where k > 0 is,
 - **A** 4
 - **B** 2
 - **C** 0
 - **D** -2
- 10. The diagram below shows the graph of a trigonometric function.

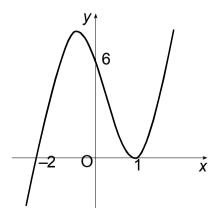


Which of the following could be the equation of the graph?

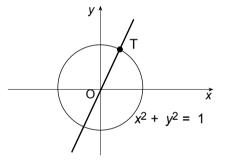

- **A** $y = 1 + \sin x^o$
- **B** $y = 1 \sin x^{\circ}$
- **C** $y = 2 \cos x^{\circ}$
- **D** $y = 2\cos x^{o} 1$
- 11. A recurrence relation is defined by $U_{n-1} = 0.4U_n 24$. The limit of this sequence is,
 - A -40
 - B -24
 - C 0.03
 - D 50
- 12. The graphs y = f(x) and y = g(x)intersect at points (a,b and (c,d) as shown opposite.

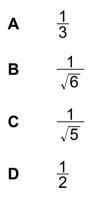
The shaded area is given by,

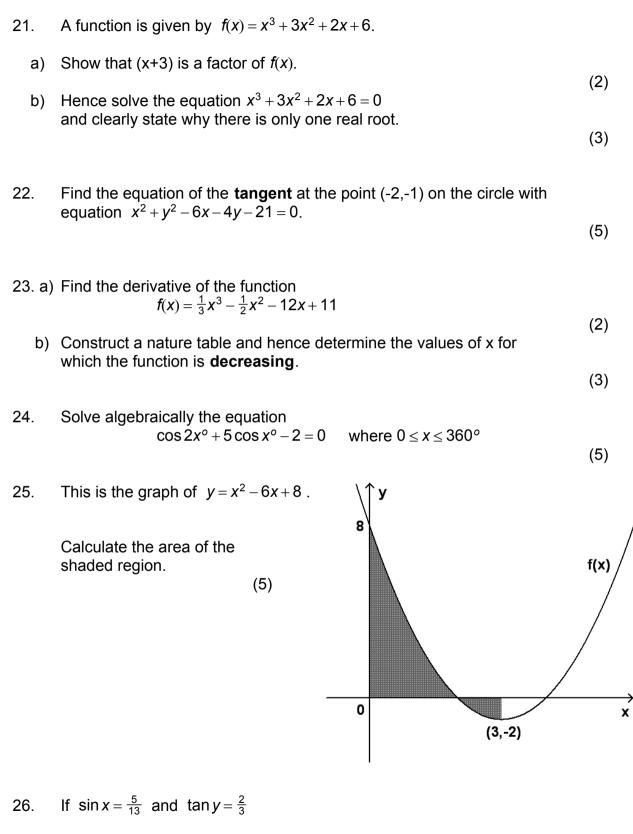
- $\mathbf{A} \qquad \int_{b}^{d} (f(x) g(x)) \, dx$
- $\mathbf{B} \qquad \int_{a}^{c} (f(x) + g(x)) \, dx$
- $\mathbf{C} \qquad \int_{a}^{c} (f(x) g(x)) \, dx$
- **D** $\int_{a}^{d} (f(x) g(x)) dx$


13. Given that $\cos x^o = \frac{1}{\sqrt{3}}$ and $0 < x^o < 90$, then the exact value of $\cos 2x$ will be,

- 14. The tangent to the curve with equation $y = 2x^3 1$ at the point where x = 1 has a gradient of,
 - **A** 1 **B** 6 **C** 5 **D** $-\frac{1}{2}$
- 15. A circle has the equation $x^2 + y^2 + 4x 2y 4 = 0$. Which of the following correctly states the coordinates of its centre and the value of its radius?
 - A (-2,1), r = 1 B (2,-1), r = 3 C (-2,1), r = 3 D (2,-1), r = 1


16. When $x^2 + 8x + 5$ is expressed in the form $(x + a)^2 + b$, what is the value of b?


- A -59
 B -11
 C 0
 D 5
- 17. The diagram opposite shows part of a cubic function.What is the equation of this graph?
 - **A** $y = 6(x+2)(x-1)^2$
 - **B** $y = 3(x-2)(x+1)^2$
 - **C** $y = 3(x+2)(x-1)^2$
 - **D** $y = 6(x-2)(x+1)^2$


- 18. A line **L**, is parallel to the line with equation y = -2x + 3 and passes through the point (-3,1). What is the equation of **L**?
 - **A** y-1 = -2(x-3) **B** y-1 = 4(x-3) **C** y-1 = -2(x+3)**D** y+3 = -2(x-1)
- 19. Find $\int \frac{1}{5\sqrt{x}} dx$. **A** $\frac{2}{5}x^{\frac{1}{2}} + c$ **B** $\frac{5}{2}x^{\frac{1}{2}} + c$ **C** $-\frac{1}{10}x^{-\frac{3}{2}} + c$ **D** $\frac{1}{10}x^{-\frac{3}{2}} + c$
- 20. The line with equation y = 2x intersects the circle with equation $x^2 + y^2 = 1$ at the point T.

What is the x-coordinate of T?

Section B All questions should be attempted

- a) Determine cos x, cos y and sin y.
- b) Hence show that $\cos(x+y) = \frac{2}{\sqrt{13}}$ (2)

End of question paper

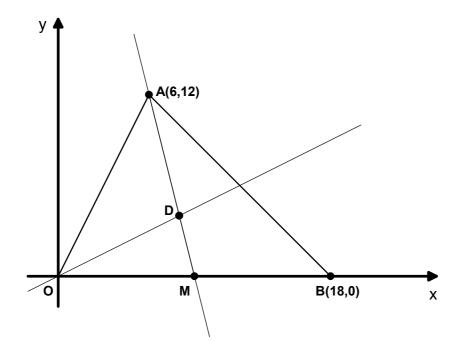
Marking Scheme for HIGHER MATHS PRELIM 2008 PAPER 1

Section A

1 2	B D
3	В
4	А
5	D
6	D
7	D
8	С
9	B
10	B
11 12	A C
12	B
14	B
15	C
16	В
17	С
18	С
19	А
20	С

	Α	в	С	D
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				

Correct answers - 2 marks each


Section A = 40 marks Section B = 30 marks

Total for paper 1 = 70 marks

Please record pupil's scores on the objective question answer sheet.

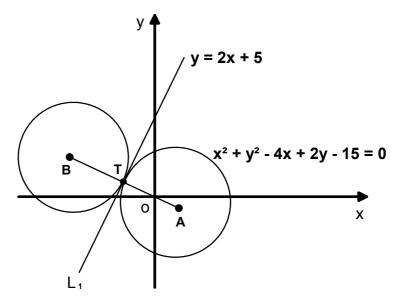
 The diagram below shows a triangle OAB. A and B are the points (6,12) and (18,0) respectively.
 The median from A mosts OB at M as shown

The median from A meets OB at M as shown.

- a) Show that the median, AM, has the equation y = -4x + 36
- b) Find the equation of the median from the origin to AB. [3]c) Show that the two medians meet at the point D(8,4).
- d) Show that the distance of AD is twice the distance of DM.
- 2. a) The terms of a sequence satisfy $U_{n+1} = kU_n + 5$. Find the value of *k* which produces a sequence with a limit of 4.

[2]

[3]


[2]

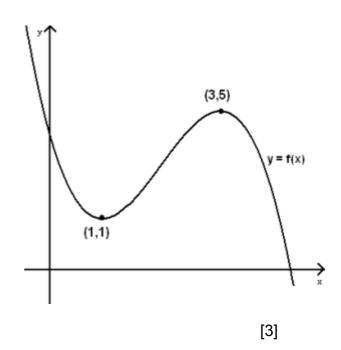
[3]

- b) A sequence satisfies the recurrence relation $U_{n+1} = mU_n + 5$, $U_0 = 3$.
 - (i) Express U_1 and U_2 in terms of *m*.
 - (ii) Given that $U_2 = 7$, find the value of m which produces a sequence with no limit.

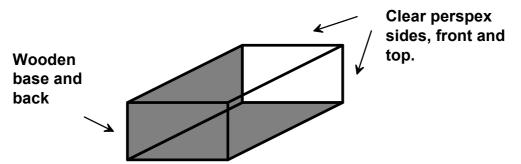
[5]

3. Two circles, both with the same radius, touch externally at T as shown below.

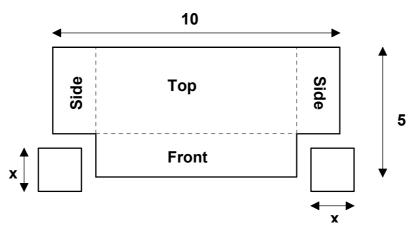
The circle with A as its centre has equation $x^2 + y^2 - 4x + 2y - 15 = 0$. Line L_1 is the common tangent to both circles through T and has as its equation y = 2x + 5.


- a) Find the coordinates of T, the point of tangency.
- [3]b) Find the coordinates of B and hence write down the equation of the other circle in the diagram.

[3]


4. The graph of the cubic function y = f(x) is shown in the diagram.

There are turning points at (1,1) and (3,5).


Sketch the graph of the derivative, y = f'(x).

5. A museum is constructing a cabinet to hold some new exhibits. Two sides of the cabinet are made from wood (which is inexpensive and easy to obtain). The other four sides are made from a very expensive clear perspex. An illustration of the cabinet is shown below.

The four sides of perspex are to be cut from a single sheet measuring 10 feet by 5 feet. This is done by removing two squares of length \mathbf{x} feet from the bottom corners of the sheet of perspex (see below).

- a) Show that the volume, V(x), of the cabinet is given by $V(x) = 2x^3 20x^2 + 50x$
- (3)
 b) The museum wishes to maximise the use of the perspex sheet. What value of x makes the cabinet of largest volume?
 (6)
 c) Calculate the largest volume and give your answer in cubic feet.
 - [2]
- 6. The point P(x,y) lies on the curve with equation $y = 6x^2 x^3$.
 - a) Find the value of x for which the gradient of the tangent at P is 12.
 - b) Hence find the equation of the tangent at P.

[2]

[5]

- 7. Two functions are defined on a suitable domain as $f(x) = x^2 + a$ and g(x) = x + 1, where *a* is a constant.
 - a) Find the value of *a* given that f(g(-2)) = -1
 - b) Hence solve the equation f(f(x)) = 2 [2]
- 8. a) By expressing sin(3x) as sin(2x+x) and expanding the brackets, show that

$$\sin(3x) = 3\sin x - 4\sin^3 x$$

[5]

[5]

b) Use the above relationship to solve the equation,

$$3\sin\theta = 4\sin^3\theta$$
 where $0 \le \theta \le \pi$ [3]

End of question paper

Marking Scheme for HIGHER MATHS PRELIM 2008 PAPER 2

Question	1 mark for each •	Illustration of evidence for awarding a mark at each •
1a	Ans: proof •1 Finds the mid-point of OB •2 Finds the gradient of median AM •3 Substitutes into equation for straight line correctly 3 marks	• M(9,0) • ${}^{m}AM = \frac{12-0}{6-9} = -4$ • $y - 12 = -4(x-6)$ or $y - 0 = -4(x-9)$
1b	Ans: $y = \frac{1}{2}x$ •1 Finds mid-point of AB •2 Calculates gradient of 2nd median •3 Gives correct equation 3 marks	• midpoint of AB (12,6) • $m = \frac{6-0}{12-0} = \frac{1}{2}$ • $y = \frac{1}{2}x$
1c	 Ans: Shows that D is (8,4) 1 Equates or uses simultaneous equations 2 Solves by algebra 2 marks 	• $\frac{1}{2}x = -4x + 36$ • $9x = 72 \Longrightarrow x = 8$ $y = \frac{1}{2} \times 8 = 4$
1d	Ans: shows that $ AD = 2 DM $ •1 Calculates length AD •2 Calculates length DM •3 Demonstrates $ AD = 2 DM $ 3 marks	• $ AD = \sqrt{(6-8)^2 + (12-4)^2} = \sqrt{68}$ • $ DM = \sqrt{(8-9)^2 + (4-0)^2} = \sqrt{17}$ • $\sqrt{68} = \sqrt{4 \times 17} = 2\sqrt{17}$ hence $ AD = 2\sqrt{17} = 2 DM $
2a	Ans: $k = -\frac{1}{4}$ •1 Know how to find limit •2 Process 2 marks	• $4 = k \times 4 + 5$ • $k = -\frac{1}{4}$
2b	Ans: $m = -2$ •1 Interpret rec relation •2 Interpret rec relation •3 Arrange in standard quadratic form •4 Factorises quadratic •5 Uses limit condition 5 marks	• $U_1 = 3m + 5$ • $U_2 = m(3m + 5) + 5$ • $3m^2 + 5m - 2 = 0$ • $(3m - 1)(m + 2) = 0$ • $m = -2$
За	Ans: (-2,1) •1 Substitutes for y in circle equation •2 Simplifies and solves for x •3 Substitutes to find y 3 marks	• $x^{2} + (2x+5)^{2} - 4x + 2(2x+5) - 15 = 0$ • $5(x+2)^{2} = 0; x = -2$ • $y = 2(-2) + 5; y = 1$
3b	Ans: $(x+6)^2 + (y-3)^2 = 20$ •1 Establishes coordinates of B •2 Finds r^2 •3 Substitutes into general circle equation 3 marks	• B(-6,3) • $r^2 = 20$ • $(x+6)^2 + (y-3)^2 = 20$

Question	1 mark for each •	Illustration of evidence for awarding a mark at each •
4	Ans:	
	 Interprets stationary points Interpret between roots Know that f'(cubic) = parabola marks 	 Only two intercepts on the x-axis at 1 and 3 Function is +ve between the roots and -ve outwith A parabola (symmetrical about midpoint of x-intercepts), stated or implied by the accuracy of the diagram.
5a	Ans: Proof •1 For correct length •2 For correct breadth •3 For correct volume 3 marks	• 10 - 2x • 5 - x • $2x^3 - 20x^2 + 50x$
5b	Ans: $x = \frac{5}{3}$ •1 For knowing to differentiate •2 For correct derivative •3 For V'(x) = 0 •4 For correct solutions •5 For nature table •6 For selecting correct value for max. 6 marks	• V'(x) • $6x^2 - 40x + 50$ • $6x^2 - 40x + 50 = 0$ • $x = \frac{5}{3}, x=5$ • Justify max at $x = \frac{5}{3}$ • $x = \frac{5}{3}$
5c	Ans: $V = 37\frac{1}{27}$ or $\frac{1000}{27}$ or 37.04 cu feet •1 For correct substitution into V(x) •2 For correct volume 2 marks	• $2(\frac{5}{3})^3 - 20(\frac{5}{3})^2 + 50(\frac{5}{3})$ • $V = 37\frac{1}{27}$ or $\frac{1000}{27}$ or 37.04 cu feet
6a	 Ans: x = 2 1 Know to differentiate 2 Differentiate 3 Set derivative equal to gradient 4 Start to solve 5 Process 5 marks 	• $\frac{dy}{dx} =$ • $12x - 3x^2$ • $12x - 3x^2 = 12$ • $3(x-2)^2 = 0$ • $x = 2$
6b	Ans: $y = 12x - 8$ •1 Substitutes and finds y coordinate •2 State equation of tangent 2 marks	 <i>y</i> = 16 <i>y</i> - 16 = 12(x - 2) no need to simplify