1)

An automated train is programmed to move from rest under constant acceleration to a maximum speed of 20 m s⁻¹ in a distance of 300 m. It is brought to rest under uniform deceleration in 15 seconds. Two stations are 5 kilometres apart and the train is programmed to stop at each station.

Find the time taken to travel between the two stations.

5

2)

A body moves along the X-axis from rest at the origin with acceleration, measured in ms-2, given by $\underline{a} = (2 - \sqrt{t})\underline{i}$

where \underline{t} is the unit vector in the positive direction of the X-axis and t is the time in seconds from the start of the motion.

a) Show that the speed increases to a maximum value then decreases. Find this value.

b) Find

- i) the time till the body is instantaneously at rest again
- ii) the time before it again passes through its starting point.

۴

3)

As a set of traffic lights changes to green, a car accelerates uniformly from rest along a straight horizontal road at $a\,\mathrm{m\,s^{-2}}$. At the same instant, a lorry travelling at constant speed $U\mathrm{m\,s^{-1}}$ overtakes the car.

Find an expression, in terms of U and a, for the distance travelled by the car when it draws level with the lorry.

4

4)

An athlete runs a 200 metre race, along a straight horizontal track, in 30 seconds. She accelerates uniformly from rest for 4 seconds, reaching a maximum speed of $V \, \mathrm{m \, s}^{-1}$. She runs at this speed for 24 seconds before decelerating uniformly for the final 2 seconds, finishing the race with speed $(V-6) \, \mathrm{m \, s}^{-1}$.

Sketch the speed-time graph for the race and calculate the value of V.

4

The speed-time graph of the motion of a car as it travels along a straight road is shown below. The car accelerates from O and passes markers on the road at A, B, C before stopping at D after 120 seconds. The car passes A after 40 seconds, B after T_B seconds, and C after 100 seconds.

The speed of the car between A and B is given by $v_1(t) = -\frac{1}{2}t + 45$ ($40 \le t \le T_B$) and between B and C by $v_2(t) = \frac{1}{8}t + \frac{15}{2}$ ($T_B \le t \le 100$), where the speed is measured in metres per second and time t is measured in seconds from the beginning of the motion.

3

- (a) Calculate the speed of the car at B.
- (b) Calculate the distance between B and D.