Marking Instructions for each question

Question		on	Generic scheme	Illustrative scheme	Max mark	
1.	(a)		• ¹ calculate impulse	• ¹ 78	2	
			• ² calculate speed	• ² 9.75		
Note	s:					
1. D	o not	awaro	$d \bullet^2$ for a negative answer			
			Alternative Solution			
			• ¹ calculate acceleration	• ¹ 8.125		
			• ² calculate speed	• ² 9.75		
	(b)		• ³ state velocity after impact	• ³ -9.75	2	
			• ⁴ calculate impulse on object	• ⁴ 156		
Notes:						
 •³ can be implied in •⁴ Do not award •⁴ for a negative answer. However treat negative answers for both •² and •⁴ as a repeated error. 						

Commonly Observed Responses:

Q	uestic	n	Generic scheme	Illustrative scheme	Max mark			
2.			• ¹ state expression	• ¹ $\frac{A}{1+x} + \frac{B}{1-x} + \frac{C}{(1-x)^2}$	3			
			• ² form equation and find one unknown	• ² $2-3x-x^2 = A(1-x)^2$ +B(1-x)(1+x)+C(1+x) and one from $A = 1, B = 2, C = -1$				
			• ³ obtain remaining unknowns	• ³ remaining from $A = 1, B = 2, C = -1$				
Note	Notes:							
1. Ev	1. Evidence for \bullet^1 may appear at \bullet^3							
Commonly Observed Responses:								

Question		n	Generic scheme	Illustrative scheme	Max mark		
3.	(a)		• ¹ substitute values into equation of motion	• $0 = (25 \sin 30)^2 - 2gs$	2		
			• ² calculate maximum height	• ² 7.97			
			Alternative Solution				
			• ¹ calculate time to maximum height	• ¹ 1.28			
			• ² calculate speed	• ² 9.75			
Note	s:						
	(b)		• ³ substitute values into equation of motion	• ³ 1= (25 sin 30) $t - \frac{1}{2}gt^2$	3		
			\bullet^4 solve quadratic for t	•4 2.47			
			 ⁵ calculate the horizontal distance 	• ⁵ 53.4			
Note	s:				1		
Com	Commonly Observed Responses:						

Question		on	Generic scheme	Illustrative scheme	Max mark		
4.	(a)		$ullet^1$ state the period of the motion	• ¹ 16	1		
	(b)		$ullet^2$ calculate value of $ arnow $	$\bullet^2 \frac{\pi}{8}$	2		
			• ³ calculate amplitude	• ³ 15.3			
Note	Notes:						
Com	monly	/ Obse	erved Responses:				

Question		n	Generic scheme	Illustrative scheme	Max mark		
5.			• ¹ solve auxiliary equation	• $m = 2$, $m = -3$	5		
			• ² state general solution	$\bullet^2 x = Ae^{2t} + Be^{-3t}$			
			• ³ differentiate	$\bullet^3 \frac{dx}{dt} = 2Ae^{2t} - 3Be^{-3t}$			
			 ⁴ form equations and solve for one constant 	• ⁴ $A = 1$ or $B = -1$			
			 ⁵ find second constant and state particular solution 	• $x = e^{2t} - e^{-3t}$			
Note	s:						
1. \bullet^1 may be implied by \bullet^2							
Commonly Observed Responses:							

Question		on	Generic scheme	Illustrative scheme	Max mark
6.	(a)		• ¹ integrate <i>a</i> with respect to <i>t</i> and include constant of integration	• ¹ $v = \int a dt = at + c$	2
			• ² use initial conditions and complete	• ² $t = 0, v = u \Longrightarrow c = u$ v = u + at	
			Alternative Solution		
			• ¹ set up integral and include limits	•1 $\int_{u}^{v} dv = \int_{0}^{t} a dt$	
			• ² integrate and complete		
Note	s:	1			1
	(b)		• ³ Integrate expression from part a	• ³ $\int v dt = ut + \frac{1}{2}at^2 + k$	2
			• ⁴ find constant and state expression	$t = 0 s = 0 \Longrightarrow k = 0$ $\bullet^{4} s = ut + \frac{1}{2}at^{2}$	
Note	s:			·	1
• Do • Ao	o not ccept	penali use of	se the omission of a constant for • ³ , ho f the same letter for the constant in pa	wever • ⁴ is then unavailable rts (a) and (b)	
			Alternative Solution		
			• ¹ set up integral and include limits	•1 $\int_{0}^{s} ds = \int_{0}^{t} (u+at) dt$	
			• ² integrate and complete	$\bullet^2 s = ut + \frac{1}{2}at^2$	

Q	Question		Generic scheme	Illustrative scheme	Max mark		
7.			 ¹ choose functions to differentiate and integrate and start to integrate ² continue to integrate ³ complete integration, simplify and include constant of integration 	• ¹ $18x\left(-\frac{1}{3}\cos 3x\right) - \int \dots$ • ² $\dots - \int \left(18 \times \left(-\frac{1}{3}\cos 3x\right)\right) dx$ • ³ $-6x\cos 3x + 2\sin 3x + c$	3		
Note Do no	Notes: Do not withhold • ³ if constant of integration is omitted						
Com	Commonly Observed Responses:						

Question		on	Generic scheme	Illustrative scheme	Max mark		
8.			• ¹ resolve forces vertically	• ¹ $R = mg$	5		
			• ² apply Newton's second law horizontally	• ² $\mu R = mr\omega^2$			
			• ³ combine equations	• ³ $\mu mg = mr\omega^2$			
			 ⁴ convert angular speed to radians per second 	• ⁴ 3π			
			$ullet^5$ substitute values and calculate	• ⁵ 0.634			
Note	s:		2				
1. A	1. Accept the use of $\frac{v^2}{r}$ instead of $r\omega^2$ at \bullet^2 and \bullet^3						
Com	Commonly Observed Responses:						

Question	Generic scheme	Illustrative scheme	Max mark
9.	• ¹ know that volume $= \int \pi y^2 dx$ and begin to substitute	• ¹ $\int \pi y^2 dx = \int \pi \frac{\dots}{\left(3x^3 - 1\right)} dx$	6
	• ² complete substitution and introduce limits	• ² $\int_{1}^{2} \pi \frac{36x^2}{(3x^3 - 1)} dx$	
	• ³ differentiate	• ³ $du = 9x^2 dx$ or $\frac{du}{dx} = 9x^2$	
	• ⁴ determ`ine limits	• $\int_{2}^{23} du$	
	• ⁵ complete integral	• ⁵ $4\pi \int_{2}^{23} \frac{1}{u^2} du$	
	• ⁶ integrate and evaluate	• ⁶ $\frac{42\pi}{23}$	
Notes: (see next page)			

Question	Generic scheme	Illustrative scheme	Max mark			
9.	Alternative Solution (without calculating limits for u)					
	• ¹ know that volume $= \int \pi y^2 dx$ and begin to substitute	• ¹ $\int \pi y^2 dx = \int \pi \frac{\dots}{\left(3x^3-1\right)} dx$				
	• ² complete substitution and introduce limits	• ² $\int_{1}^{2} \pi \frac{36x^2}{(3x^3-1)^2} dx$				
	• ³ differentiate	• ³ $du = 9x^2 dx$ or $\frac{du}{dx} = 9x^2$				
	• ⁴ state integral	• ⁴ $4\pi \int_{\dots}^{\dots} \frac{1}{u^2} du$				
	• ⁵ integrate and include limits	• ⁵ $4\pi \left[\frac{-1}{3x^3-1}\right]_1^2$				
	• ⁶ integrate and evaluate	• ⁶ $\frac{42\pi}{23}$				
Notes:						
1. For $\bullet^1 dx$ mu	ust appear prior to • ³					
2. For \bullet^- to be	awarded, correct limits must be present $\frac{2}{2}$. Evidence of this may appear elsewher	e			
3. •1 may also	5. \bullet^1 may also be awarded for $\int \pi y^2 dx$					
4. • ⁶ is unavai	• ⁶ is unavailable if the limits 1 and 2 are substituted for u					
5. Treat the a	5. Treat the appearance of the limits 1 and 2 at • ⁴ in 1 st method as bad form if it is later corrected					
Commonly Ob	served Responses:					

Question		on	Generic scheme		Illustrative scheme	Max mark	
10.	(a)		• ¹ consider total energy at A		• ¹ = 0.1×9.8×0.6 + $\frac{1}{2}$ ×0.1×1.2 ²	2	
			• ² use conservation of energy to find speed at B		• ² 3.63		
Note	s:						
Com	monly	0bse	erved Responses:				
	(b)		• ³ state the force equation when rod is at A		• ³ $T - mg \cos 180^\circ = \frac{mv^2}{r}$	3	
			• ⁴ calculate tension		• ⁴ -0.5		
			• ⁵ identify as thrust/compression		• ⁵ rod is in thrust/compression		
Note 1. lf	s: a pos	itive a	answer is awarded $ullet^4$ as a follow th	iroug	h, do not award $ullet^5$ for "rod is in tension	ז"	
Com	monly	' Obse	erved Responses:				
	(c)		• ⁶ consider forces in equilibrium when tension is zero.	•6	$\frac{mv^2}{r} + mg\cos\theta = 0$	5	
			 ⁷ consider potential energy at this point. 	•7	$E_P = mgr(1 - \cos\theta)$		
			• ⁸ use conservation of energy to find kinetic energy at angle θ	•8	$\frac{1}{2}mv^2 = \frac{1}{2}mv_B^2 - E_P$		
			 ⁹ combine equations to eliminate v 	•9	$\frac{m}{r} \left(v_B^2 - 2gr(1 - \cos\theta) \right) + mg\cos\theta = 0$		
			• ¹⁰ solve for θ	• ¹⁰	146°		
Note 1. Ev 2. Fc	Notes: 1. Evidence for • ⁶ may appear later in the solution 2. For • ¹⁰ accept 2.55 radians						
Com	Commonly Observed Responses:						

Question		n	Generic scheme	Illustrative scheme	Max mark			
11.			 ¹ identify integral form of integrating factor 	• ¹ $e^{\int -\frac{1}{x}dx}$	6			
			• ² determine integrating factor	$\bullet^2 \frac{1}{x}$				
			\bullet^3 write as integral equation	• ³ $\frac{1}{x}y = \int e^{2x} dx$				
			• ⁴ integrate	• $\frac{1}{x}y = \frac{1}{2}e^{2x} + c$				
			• ⁵ evaluate constant	• ⁵ $c = e^2$				
			• ⁶ form particular solution	• $y = \frac{1}{2}xe^{2x} + e^2x$				
Note	Notes: 1. If constant of integration is omitted at e^4 award e^4 but e^5 and e^6 are upayoilable							
Com	Commonly Observed Responses:							

Question		on	Generic scheme	Illustrative scheme	Max mark		
12.	(a)		 ¹ resolve forces perpendicular to the plane ² resolve forces parallel to the plane for μR acting up the plane ³ startereste alignments 	• ¹ $R + F \sin \theta = mg \cos \theta$ • ² $\mu R + F \cos \theta = mg \sin \theta$ $\mu \left(mg \cos \theta - \frac{1}{2} mg \sin \theta \right)$	5		
			• ³ strategy to eliminate <i>K</i> and substitute for F • ⁴ simplify by eliminating <i>mg</i> and fractions • ⁵ use $\tan \theta = \frac{\sin \theta}{2}$ and	+ $\frac{1}{2}mg\cos\theta = mg\sin\theta$ • ⁴ $2\mu\cos\theta - \mu\sin\theta + \cos\theta = 2\sin\theta$ • ⁵ working legitimately leading to			
			rearrange to required answer	$\mu = \frac{2\tan\theta - 1}{2 - \tan\theta}$			
Notes: 1. W may be used instead of mg . 2. \bullet^3 is unavailable if $R = mg$ is stated at \bullet^1							
Com	Commonly Observed Responses:						

Q	Question		Generic scheme	Illustrative scheme	Max mark	
12.	(b)		Method 1	Method 1	5	
			$ullet^6$ determine the value of μ	• ⁶ 0.109		
			• ⁷ resolve forces parallel to the slope	• ⁷ $kmg\cos 30^\circ = 0.109R + mg\sin 30^\circ$		
			• ⁸ resolve forces perpendicular to the slope	• ⁸ $R + kmg \sin 30^\circ = mg \cos 30^\circ$		
			• ⁹ substitute for R	$kmg \cos 30^\circ =$ •9 0.109(mg cos 30° - kmg sin 30°) +mg sin 30°		
			• ¹⁰ state magnitude of force in terms of m and g	• ¹⁰ 0.646 <i>mg</i>		
			Method 2	Method 2		
			$ullet^6$ determine the value of μ	• ⁶ 0.109		
			• ⁷ resolve forces parallel to the slope	• ⁷ $F \cos 30^\circ = 0.109R + mg \sin 30^\circ$		
			 ⁸ resolve forces perpendicular to the slope 	• ⁸ $R + F \sin 30^\circ = mg \cos 30^\circ$		
				$F\cos 30^\circ =$		
			• ⁹ substitute for R	• $0.109(mg\cos 30^\circ - F\sin 30^\circ)$ + $mg\sin 30^\circ$		
			• ¹⁰ state magnitude of force	• ¹⁰ 0.646 <i>mg</i>		
Notes:						
1. • r is unavailable if $R = mg$ is stated at • r						
Commonly Observed Responses:						

Quest	ion	Generic scheme	Illustrative scheme	Max mark			
13. (a)		• ¹ evidence of use of quotient rule with denominator and one term in numerator correct	• ¹ $\frac{(\tan x + 1)\sec x \tan x - \dots}{(\tan x + 1)^2}$ or $\frac{\dots -\sec x \sec^2 x}{(\tan x + 1)^2}$	3			
		• ² complete differentiation	• ² $\frac{(\tan x + 1)\sec x \tan x - \sec x \sec^2 x}{(\tan x + 1)^2}$				
		• ³ simplify and complete	$\dots = \frac{\sec x (\tan x - 1)}{(\tan x + 1)^2} \text{ leading to}$				
			either $f(x) \frac{\tan x - 1}{\tan x + 1}$				
			or $\frac{\sec x}{\tan x + 1} \cdot \frac{\tan x - 1}{\tan x + 1}$				
Notes: 1. For • ³	to be a	warded, the use of $1 + \tan^2 x = \sec^2 x$ of	or equivalent should be obvious				
(b)		• ⁴ recognise form of integral	• ⁴ $\int \frac{f'(x)}{f(x)} dx$ stated or implied by • ⁵	2			
		• ⁵ integrate	• ⁵ $\ln \left \frac{\sec x}{\tan x + 1} \right + c$				
Notes:							
1. Accept	1. Accept $\ln\left(\frac{\sec x}{\tan x + 1}\right) + c$						
2. Do not	Commonly Observed Responses:						

Question			Generic scheme	Illustrative scheme	Max mark	
14.	(a)		• ¹ state condition for maximum velocity with substitution	• $15 + x - 2x^2 = 0$	2	
			• ² solve the equation for positive value of x .	• ² 3		
	(b)	(i)	• ³ set up integral for work done	$\bullet^3 \int (75+5x-10x^2) dx$	3	
			• ⁴ integrate	• ⁴ $\left[75x + \frac{5}{2}x - \frac{10}{3}x^2\right]_0^3$		
			• ⁵ calculate the work done	• ⁵ 157.5		
		(ii)	• ⁶ use the work-energy principle	• $\frac{1}{2} \times 5 \times v^2 - \frac{1}{2} \times 5 \times 0^2 = 157.5$	2	
			• ⁷ determine value of	• ⁷ 7.94 or $\sqrt{63}$		
			Alternative Solution			
			• ⁶ replace acceleration with $v \frac{dv}{dx}$, separate variables and set up integration	$\int_{0}^{v} v dv = \int \left(15 + x - 2x^2 \right) dx \text{or}$ $\int_{0}^{v} v dv = \int_{0}^{3} \left(15 + x - 2x^2 \right) dx$		
			• ⁷ integrate and complete	• ⁷ 7.94 or $\sqrt{63}$		
Note 1. If	 Notes: 1. If an indefinite integral is used in the alternative solution, a constant of integration must be considered for •⁷ to be awarded 					

Question			Generic scheme	Illustrative scheme	Max mark	
15.	(a)	(i)	• ¹ obtain velocity vector	$\bullet^1 \begin{pmatrix} 3000t + 240 \\ 0 \\ 80t + 50 \end{pmatrix}$	2	
			• ² substitute and calculate speed	• ² 843		
			Alternative Solution			
			substitute into equation of motion	$\bullet^{1} \begin{pmatrix} 240\\0\\50 \end{pmatrix} + \begin{pmatrix} 3000\\0\\80 \end{pmatrix} \times 0.2$		
			• ² calculate speed	• ² 843		
Note	s:			<u> </u>		
Do no	ot per	alise	candidates who use two-dimensional ve	ectors in (a)(i)		
		(ii)	• ³ obtain position vector	• ³ $\begin{pmatrix} 1500t^2 + 240t \\ 0 \\ 40t^2 + 50t \end{pmatrix}$	2	
			• ⁴ evaluate position vector	$\bullet^4 \begin{pmatrix} 108\\0\\11.6 \end{pmatrix}$		
			Alternative Solution			
			• ¹ substitute into equation of motion	$\bullet^{1} \begin{pmatrix} 240\\0\\50 \end{pmatrix} + \begin{pmatrix} 3000\\0\\80 \end{pmatrix} \times 0.2$		
			• ² evaluate position vector	$\bullet^2 \begin{pmatrix} 108\\0\\11.6 \end{pmatrix}$		
Notes: Do not penalise candidates who use two-dimensional vectors in (a)(ii)						

Question			Generic scheme	Illustrative scheme	Max mark		
15.	(b)	(i)	• ⁵ Find resultant velocity	• ⁵ $\begin{pmatrix} 832.6 \\ -50 \\ 0 \end{pmatrix}$	2		
			• ⁶ Calculate angle	• ⁶ 3.4°			
Note	s:						
Com	Commonly Observed Responses:						
		(ii)	• ⁷ Find displacement vector	• ⁷ $\begin{pmatrix} 832.6t + 108 \\ -50t \\ 11.6 \end{pmatrix}$	3		
			 ⁸ Find displacement after 90 mins ⁹ Find harimental component 	• ⁸ $\begin{pmatrix} 1190.37 \\ -65 \\ 11.6 \end{pmatrix}$			
Note			• Find norizontal component	• 1192.1			
note							
Com	Commonly Observed Responses:						

Question			Generic scheme	Illustrative scheme	Max mark			
16.	(a)		 ¹ use conservation of energy with substitution 	• ¹ $20 = \frac{1}{2} \times 0.1 \times v^2 + 0.1 \times 9.8 \times 10$	2			
			• ² solve for v	• ² 14.3				
Note	s:							
Com	monly	0bse	erved Responses:					
	(b)		• ³ calculate speed	• ³ \sqrt{41}[6.40]	2			
			 ⁴ use conservation of energy to calculate height 	• ⁴ 18.3				
Note Evide	Notes: Evidence for \bullet^3 may appear in working for \bullet^4							
Com	Commonly Observed Responses:							
	(c)		• ⁵ use horizontal velocity to calculate kinetic energy	• ⁵ 0.8	1			
Notes:								
Com	Commonly Observed Responses:							

[END OF MARKING INSTRUCTIONS]