Υ	Q	Circular Motion	
19	12	A section of motorcycle track consists of a circular bend of radius r metres banked at an angle θ° to the horizontal.	
		The minimum speed that a motorcyclist can ride around the bend without slipping is $v = \frac{\sqrt{gr}}{10} \text{ms}^{-1}.$	
		$v = \frac{1}{10}$ ms.	
		(a) Show that the coefficient of friction μ can be expressed as	
		$\mu = \frac{100 \tan \theta^{\circ} - 1}{\tan \theta^{\circ} + 100}.$	5
		The circular bend is banked at an angle of 25° to the horizontal and has a radius of 80 m.	
		A motorcyclist approaches the bend at a speed of $28 \mathrm{ms^{-1}}$.	
		(b) Determine whether the motorcyclist can travel around the bend at this speed without slipping.	4
		On another occasion, a different motorcyclist approaches the same bend at the same speed of $28\mathrm{ms^{-1}}$, but slides off the track.	
		(c) State one possible reason for this outcome and justify your answer.	1
18	5	A body of mass $m \log$ is attached to one end of a light inextensible string of length l metres.	
		The other end of the string is fixed and the body is spun in a horizontal circle so that the path of the string forms a conical pendulum, as shown in the diagram.	
		The angular speed of the body is ω radians per second.	
		Given that the length of the string is double the radius of the horizontal circle, show that	
		$\omega^2 = \frac{2g}{\sqrt{3}l}.$	5

17	6	A ride at an amusement park consists of a hollow cylinder of radius 3·5 metres which rotates about its vertical axis of symmetry.	
		When the angular speed reaches 4 rad s ⁻¹ the floor is lowered and a person remains in contact with the inner surface of the cylinder without slipping. What is the minimum coefficient of friction to prevent the person from slipping?	4
17	13	A satellite orbits the Earth at a height of h metres above its surface.	_
		(a) If the radius of the Earth is R metres and the acceleration due to gravity experienced at the surface of the Earth is 9 times that experienced at the satellite, find an expression for h in terms of R .	4
		(b) If a second satellite is orbiting Earth at a height $3R$ metres above the surface, show that the angular velocity of the second satellite can be expressed as $\frac{1}{8}\sqrt{\frac{g}{R}}$.	3
16	9	A velodrome has a circular track of radius 30 metres, banked at an angle of 32° to the horizontal. The coefficient of friction between a bicycle tyre and the track is 0.3 .	
		(a) Once the cyclist reaches maximum speed without the bicycle slipping, he cycles for 5 minutes. Assuming he maintains this speed, how many full laps does he complete?	6
		(b) Given that air resistance can be ignored and the cyclist is treated as a particle, what other assumption has been made?	1

16	17	A light inextensible string of length r metres has one end attached to a fixed point O and the other end is attached to a particle of mass m kilograms.	_
		From its equilibrium position, the particle is given a horizontal velocity $u\mathrm{m}\mathrm{s}^{-1}$, as shown in the diagram.	
		(a) (i) Show that the tension, <i>T</i> , in the string can be expressed as	
		$T = \frac{mu^2}{r} + mg\left(3\cos\theta - 2\right)$	
		where $\boldsymbol{\theta}$ is the angle between the string and the downward vertical through O.	4
		(ii) Determine a condition for u in terms of r and g , so that the particle executes a complete circle.	2
		(b) Given that the value of u is $2\sqrt{rg}$, find an expression in terms of r for the height of the particle above its starting position when the string goes slack.	3
16	13	The distance of the Earth from the Sun is 1.50×10^{11} metres.	
S		The distance of Venus from the Sun is 1.08×10^{11} metres.	
		Calculate the period of rotation of Venus around the Sun, giving your answer in Earth years.	
		State one assumption you have made when calculating your answer.	6
16 S	17	A car of mass M kg is travelling with a speed of v m s ⁻¹ round a circular bend of radius 40 metres on a road banked at 30° to the horizontal. The coefficient of friction between the car tyres and the road surface is μ .	
		(a) Show that the square of the maximum speed the car can travel without slipping is given by	
		$v^2 = \frac{392(1+\sqrt{3}\mu)}{\sqrt{3}-\mu}$	5
		The minimum speed that the car can travel round the bend without slipping is $u\mathrm{m}\mathrm{s}^{-1}$.	-
		(b) Given that $v=3u$, calculate the coefficient of friction between the car tyres and the road.	6