Υ	Q	Equations of Motion	
18	1	A boat accelerates steadily from a speed of $10\mathrm{ms^{-1}}$ to $14\mathrm{ms^{-1}}$ over a distance of $1\cdot2$ kilometres.	
		The boat continues to accelerate at the same rate for a further two minutes.	
		The engines are then put into reverse to produce an immediate deceleration of the same magnitude as the previous acceleration. This brings the boat to rest.	
		Calculate the total distance travelled by the boat since it started to accelerate.	5
18	16	Two runners are taking part in a relay race and preparing to hand over the baton. They are running in the same straight line when they exchange the baton.	
		Runner P is running at a constant speed of $12\mathrm{ms^{-1}}$ when he decelerates at $4\mathrm{ms^{-2}}$ in preparation for the baton change, at which point he must be travelling at $9\mathrm{ms^{-1}}$. He continues to decelerate at the same rate until he comes to rest.	
		Runner Q takes the baton 3 seconds after starting running with a constant acceleration. He has achieved a speed of $9\mathrm{ms^{-1}}$ when the baton is exchanged and continues to accelerate to a maximum speed of $12\mathrm{ms^{-1}}$.	
		(a) (i) Sketch a velocity/time graph to represent both runners, annotating all relevant points on your graph.	2
		(ii) For how many seconds has P decelerated before baton change?	1
		(b) At the point when the baton is exchanged, Q is 0.8 metres ahead of P .	
		How far is P behind Q when Q starts to run?	5
16	6	A remote controlled aircraft is flown from point A to point B. It accelerates for 10 seconds at a constant rate from rest to a take-off speed of 15 m s ⁻¹ .	
		Once airborne, it accelerates for a further 20 seconds at a slower constant rate to a cruising speed of u m s ⁻¹ .	
		It maintains this speed for 60 seconds until it lands.	
		The aircraft then decelerates for 10 seconds to a complete stop.	
		(a) Sketch a speed-time graph of the journey, clearly showing all the important information.	2
		(b) (i) If the distance travelled from A to B is $1.725 \mathrm{km}$, calculate the value of u .	2
		(ii) State one assumption you have made about the path of the aircraft during	
		your calculations.	1
16 (Sp)	4	A train travels from Glasgow to Stirling. It starts from rest and accelerates uniformly for the first 9 km of its journey. It then travels for 46.8 km at a uniform velocity, before decelerating uniformly to rest in 7.2 km. The total journey time is 33 minutes.	
		(a) Sketch a velocity-time graph with appropriate units to represent this journey.	2
		(b) Calculate, in ${\rm km}{\rm h}^{-1}$, the maximum speed reached by the train.	4
		(c) State one assumption you have made in answering this question.	1