
Υ	Q	Forces	
Y 19	9 9	Forces A box of mass 5 kg rests on a smooth surface that is inclined at an angle of 40° to the horizontal. Two external forces are applied to hold the box in equilibrium. These are a force of magnitude 25 newtons that is parallel to the slope, and a force of magnitude F newtons at an angle θ ° to the slope as shown in the diagram.	
		The normal reaction force between the box and the slope is of magnitude 30 newtons.	_
		Calculate the angle $ heta^\circ$, and the magnitude of the force F .	5
18	12	A child sits on a seat at the higher end of the zip wire and is given an initial speed of 2 m s ⁻¹ , parallel to the cable. The combined mass of the child and seat is <i>m</i> kg. The coefficient of friction between the rod and the cable is 0·3 and the cable is 20 m long. You may assume that the rod remains vertical as it travels along the cable.	
		(a) Calculate the speed of the child at the lower end of the zip wire.	4

17	1		
' /		A skier starts from rest and skis straight down a slope inclined at an angle $ heta$ to the	
		horizontal, where $\sin \theta = \frac{1}{4}$. The coefficient of friction between the skis and the	
		snow is 0·125.	
		Find the speed of the skier after she has travelled 75 metres.	4
			-
17	17	A body of mass 12 kg is moving down a rough plane inclined at an angle $ heta$ to the	_
		horizontal, where $\sin \theta = \frac{3}{4}$. As it passes through a point A it has a speed of 5 m s ⁻¹ .	
		4	
		(a) At a point B further down the slope its speed is 10 m s ⁻¹ .	
		Show that the distance AB is $\frac{150}{(3-\sqrt{7}\mu)g}$ metres, where μ is the coefficient of	
		$(3-\sqrt{7}\mu)g$	
		friction between the body and the plane.	5
		On reaching a speed of 10 m s ⁻¹ a horizontal force of 260 N is applied to the body. This brings the body to rest in a distance half that of distance AB.	
		This brings the body to rest in a distance had that or distance Ab.	
		(b) Calculate the value of the coefficient of friction.	
		Give your answer to two significant figures.	6
16	2	In a children's playground game, four light inextensible ropes are attached at one	
		end to a small toy ring.	
		Four children each take the other end of a rope and pull it taut.	
		The ring is in equilibrium and the whole system is in a horizontal plane with	
		appropriate axes as shown in the diagram.	
		0 "	
		ightharpoons P	
		60° 1 30°	
		x	
		60° 🗡	
		/ •	
		64 N	
		80 N	
		The tensions in the four ropes are P , Q , 80 and 64 newtons respectively, and their	
	1	directions relative to the axes are shown.	
			_
		Calculate the magnitude of the tensions ${\cal P}$ and ${\cal Q}$.	4

