

2024 Mathematics of Mechanics

Advanced Higher

Question Paper Finalised Marking Instructions

© Scottish Qualifications Authority 2024

These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments.

The information in this document may be reproduced in support of SQA qualifications only on a noncommercial basis. If it is reproduced, SQA must be clearly acknowledged as the source. If it is to be reproduced for any other purpose, written permission must be obtained from permissions@sqa.org.uk.

Marking Instructions for each question

Question		on	Generic scheme	Illustrative scheme	Max mark	
1.			• ¹ resolve vertically	• $mg = 26\cos 50^\circ + T\cos \theta$	4	
			• ² resolve horizontally	• ² $26\sin 50^\circ = T\sin \theta$		
			• ³ calculate θ	• ³ 17.9°		
			• ⁴ calculate T	• ⁴ 64.8 N		
Note	s:					
Com	monly	v Obse	erved Responses:			
2.	(a)		• ¹ state expression	$\bullet^1 \frac{A}{2x-1} + \frac{B}{x+1}$	3	
			• ² form linear equation and obtain one constant	• ² 7-2x = $A(x+1) + B(2x-1)$ A = 4 or B = -3		
			 ³ find remaining constant and state full expression 	$\bullet^3 \frac{4}{2x-1} - \frac{3}{x+1}$		
Note	s:		Λ _3			
Do no	ot acc	ept – 2	$\frac{4}{x-1} + \frac{3}{x+1}$			
Com	Commonly Observed Responses:					
	(b)		• ⁴ integrate	• ⁴ $2\ln 2x-1 - 3\ln x+1 + c$	1	
Notes: Do not penalise the omission of the constant of integration						
Com	Commonly Observed Responses:					

Q	Question		Generic scheme	Illustrative scheme	Max mark		
3.			 ¹ find expression for momentum after collision ² apply conservation of momentum ³ and a data 	• $\frac{-30u}{3} + \frac{m_B u}{2}$ • $\frac{30u}{3} = \frac{-30u}{3} + \frac{m_B u}{2}$	3		
			•° calculate mass	• 80 grams			
Note	s:						
1. \bullet^1 may be implied by \bullet^2 .							
Com	Commonly Observed Responses:						

Question	Generic scheme	Illustrative scheme	Max mark
4.	• ¹ start differentiation with evidence of use of quotient rule with denominator and one term of numerator correct	• ¹ $\frac{3(1+x^2)}{(1+x^2)^2}$ or $\frac{3x(2x)}{(1+x^2)^2}$	3
	• ² complete differentiation	• ² $\frac{3(1+x^2)-3x(2x)}{(1+x^2)^2}$	
	• ³ simplify answer	• ³ $\frac{3-3x^2}{(1+x^2)^2}$	

Notes:

Do not award \bullet^3 if there is incorrect working after a correct answer e.g. erroneous simplification of the algebraic fraction

Commonly Observed Responses:

Questio	on	Generic scheme	Illustrative scheme	Max mark		
5.		 ¹ create equation for maximum speed or acceleration ² create second equation and divide to find <i>w</i> ³ calculate amplitude 	• $a\omega^{2} = 20$ or $a\omega = 10$ • $a\omega = 10$ or $a\omega^{2} = 20$ and $\omega = 2 \text{ rad s}^{-1}$ • 35 metres	4		
		• ⁴ calculate speed	• ⁴ $\sqrt{96}$ or 9.80 ms ⁻¹			
Notes:						
Commonly Observed Responses:						

Question		'n	Generic scheme	Illustrative scheme	Max mark		
6.			• ¹ start to use chain rule	• ¹ $2\operatorname{cosec}(3x) \times \dots$	3		
			• ² complete chain rule	• ² 2cosec(3x)×(-cosec(3x)cot(3x))×3			
			• ³ evaluate	• ³ 12			
Note	s:						
Com	monly	Obse	erved Responses:				
7.			• ¹ take moments about any point	• ¹ eg 22 $g \times 1.5 + 45g \times 2$ or $3R_Q$	3		
			• ² equate to moments in opposite direction	• ² eg $22g \times 1.5 + 45g \times 2 = 3R_Q$			
			• ³ calculate reaction force at Q	• ³ 41 <i>g</i> or 401.8 N			
• ³ is	s: unava	ilable	e if g is absent by \bullet^2 stage				
Com	monly	Obse	erved Responses:				
Alter	native	e met	hod				
			• ¹ take moments about any point	• ¹ eg $22g \times 2 \cdot 5 + 45g \times 3 = R_P + 4R_Q$	3		
			• ² resolve forces vertically	• ² eg $R_P + R_Q = 22g + 45g$			
			• ³ calculate reaction force at Q	• ³ 41 <i>g</i> or 401.8 N			
Note	Notes:						
Com	Commonly Observed Responses:						

Question		on	Generic scheme	Illustrative scheme	Max mark		
8.	(a)		• ¹ find expression for time	• ¹ $t = \frac{x}{u\cos\theta}$	3		
			• ² find expression for height	$e^2 u \sin \theta \times t - \frac{1}{2}gt^2$			
			• ³ substitute expression for time and simplify to required form	• $u\sin\theta \times \frac{x}{u\cos\theta} - \frac{1}{2}g\frac{x^2}{u^2\cos^2\theta}$ leading to			
				$y = x \tan \theta - \frac{1}{2u^2 \cos^2 \theta}$			
Note	es:						
Com	monly	/ Obse	erved Responses:				
	(b)		• ⁴ substitute into trajectory equation	• ⁴ 9 = 30 tan $\theta - \frac{9.8 \times 30^2}{2 \times 20^2} (1 + \tan^2 \theta) a$	4		
			• ⁵ set up quadratic equation	• ⁵ eg11.025 tan ² θ - 30 tan θ + 20.025 = 0			
			• ⁶ solve for $\tan \theta$	• ⁶ $\tan \theta = 1.174$ or 1.546			
			• ⁷ give range of angles	• ⁷ 49.6° < θ < 57.1°			
Note	Notes:						
Com	Commonly Observed Responses:						

Question		on	Generic scheme	Illustrative scheme	Max mark			
9.			• ¹ differentiate implicitly with respect to <i>t</i>	• $3\frac{dv}{dt} + \dots$	5			
			• ² start to differentiate using product rule	• ² $2te^{v} +$				
			• ³ complete differentiation	• ³ $3\frac{dv}{dt} + 2te^v + t^2e^v\frac{dv}{dt} = 0$				
			• ⁴ determine value of t when $v = 0$	• $t = 3$				
			 ⁵ evaluate instantaneous acceleration 	• $^{5} -\frac{1}{2} \text{ ms}^{-2}$				
Note	Notes:							
Com	nonly	, Obse	erved Responses:					
Alter	native	e met	hod					
			 ¹ start to differentiate implicitly with respect to v using product rule 	• ¹ $2t \frac{dt}{dv} e^{v}$	5			
			• ² complete product rule	• ² $t^2 e^{v}$				
			• ³ complete differentiation	• ³ $3+2t\frac{dt}{dv}e^v+t^2e^v=0$				
			• ⁴ determine value of <i>t</i> when $v = 0$	• $t = 3$				
			 ⁵ evaluate instantaneous acceleration 	• ⁵ $-\frac{1}{2}$ ms ⁻²				
Note	s:		·	·				
Comi	Commonly Observed Responses:							

Question	Generic scheme	Illustrative scheme	Max mark					
10.	• ¹ consider energy at top	• ¹ $mgr(1-\cos\theta)$	4					
	• ² consider energy at bottom and use conservation of energy.	$\bullet^2 \frac{1}{2}mv^2 = mgr(1-\cos\theta)$						
	\bullet^3 determine the angle	• ³ 80.2°(1.4 radians)						
	$ullet^4$ determine the speed	• ⁴ 4.9ms ⁻¹						
Notes:								
Commonly Obse	Commonly Observed Responses:							

Q	Question		Generic scheme	Illustrative scheme	Max mark			
11.			• ¹ find integrating factor	• ¹ e^{-2x}	4			
			• ² multiply by integrating factor and state equation	$\bullet^2 \ \frac{d}{dx} \left(e^{-2x} y \right) = 3$				
			 ³ integrate and include constant of integration 	$\bullet^3 e^{-2x}y = 3x + c$				
			 ⁴ find constant and state particular solution in correct form 	• ⁴ $y = 3xe^{2x} + 5e^{2x}$ or equivalent				
Note	s:							
1. Only \bullet^1 and \bullet^2 available if c is omitted.								
Com	Commonly Observed Responses:							
	Commonly Observed Responses.							

Q	Question		Generic scheme	Illustrative scheme	Max mark	
12.	(a)		• ¹ correct shape of graph		2	
			• ² all correct annotations			
				<u>35</u> t		
Note	es:					
Com	monly	v Obse	erved Responses:			
	(b)		• ³ set up integral	• $^{3}\int_{15}^{35}905e^{-0.20793t}dt$	4	
			• ⁴ integrate	• ⁴ $\left[-4352.4e^{-0.20793t}\right]_{15}^{35}$		
			● ⁵ evaluate integral	• ⁵ 189		
			• ⁶ hence determine total distance travelled	• ⁶ distance = $\frac{1}{2} \times 15 \times 40 + 189$ = 489 m		
Note	es:	t por	alise the omission of dt	1	1	
	At \bullet° do not penalise the omission of at					
Com	Commonly Observed Responses:					

Quest	on	Generic scheme	Illustrative scheme	Max mark
13.		• ¹ separate the variables	• $\int \frac{1}{v} dv = \int \frac{2}{1+t} dt$	4
		• ² integrate	• ² $\ln v = 2 \ln(1+t) + c$	
		• ³ determine the value of the constant of integration	• ³ $\ln 2$	
		• ⁴ calculate velocity	• 4 32 ms ⁻¹	
Notes:				
 If cons Do not Where award 	tant of award a canc 0/4	integration is omitted at \bullet^2 , marks \bullet^3 a \bullet^1 if either dv or dt or both are omitted lidate attempts to integrate an express	nd \bullet^4 are unavailable. d ion involving v with respect to t, or vice	e versa,

Commonly Observed Responses:

Question		on	Generic scheme	Illustrative scheme	Max mark	
14.	(a)		• ¹ state integral	• ¹ $\sec 3x + c$	1	
	(b)		• ² start integration by parts	• ² $\sin^2 3x \sec 3x$	2	
			• ³ complete integration	• ³ $\sin^2 3x \sec 3x + 2\cos 3x + c$		
Note	s:					
1. Do not withhold \bullet^1 or \bullet^3 for the omission of the constant of integration.						
Commonly Observed Responses:						

Q	uestio	on	Generic scheme	Illustrative scheme	Max mark
15.	(a)		• ¹ calculate distance	• ¹ 10 metres	1
	(b)		• ² calculate velocity of car after 5 seconds	• ² 4ms^{-1}	4
			• ³ obtain expression for displacement of car or motorbike	• ³ $0.9t^2$ or $0.4t^2 + 4t + 10$	
			• ⁴ obtain second expression and equate	• ⁴ $0.9t^2 = 0.4t^2 + 4t + 10$	
			• ⁵ calculate time	• ⁵ 10 seconds	
Note	es:				
Com	monly	/ Obse	erved Responses:		
Alter	nativ	e met	hod 1		
			• ² obtain expression for displacement of car or motorbike	• ² 0.9 t^2 or 0.4 $(t+5)^2$	4
			• ³ obtain second expression for displacement	• 3 0.4(t+5) ² or 0.9t ²	
			• ⁴ equate expressions and start to solve	• 4 $0.9t^{2} = 0.4t^{2} + 4t + 10$	
			• ⁵ calculate time	• ⁵ 10 seconds	
Note	es:				
Com	monly	/ Obse	erved Responses:		
Alte	rnativ	e met	thod 2	1	
			• ² obtain expression for displacement of car or motorbike	• ² 0.4 t^2 or 0.9 $(t-5)^2$	4
			• ³ obtain second expression for displacement	• ³ $0.9(t-5)^2$ or $0.4t^2$	
			• ⁴ equate expressions and start to solve	• ⁴ $0.4t^2 = 0.9t^2 - 9t + 22.5$	
			• ⁵ calculate time	• ⁵ $t = 15$ leading to 10 seconds	

Qı	Question		Generic scheme	Illustrative scheme	Max mark				
15.	(c)		• ⁶ find velocity of car after 15.8 secs	• ⁶ 12.64 ms ⁻¹	3				
			• ⁷ find the distance car has to decelerate	• ⁷ 190.144m					
			• ⁸ calculate deceleration	• ⁸ 0.42 ms ⁻²					
Notes	:								
For • ⁸ accept $a = -0.42 \mathrm{ms}^{-2}$									
Comn	Commonly Observed Responses:								

Question		on	Generic scheme	Illustrative scheme	Max mark				
16.			• ¹ find $\frac{dx}{dt}$ or $\frac{dy}{dt}$	• $\frac{dx}{dt} = 3e^{3t} - 2e^{2t}$ or $\frac{dy}{dt} = 3e^{3t} + 2e^{2t}$	4				
			• ² find $\frac{dy}{dx}$	• ² $\frac{3e^{3t} + 2e^{2t}}{3e^{3t} - 2e^{2t}}$ stated or implied by					
			• ³ solve for t	• ³ ln 2					
			• ⁴ find coordinates	• ⁴ (4,12)					
Note	s:								
For •	For • ⁴ accept $x = 4, y = 12$								
Com	Commonly Observed Responses:								

Question		n	Generic scheme	Illustrative scheme	Max mark			
17.			• ¹ calculate ω	• $1 \frac{1}{1000}$	5			
			 ² apply Newton's inverse law of gravitation at the surface of the planet 	• ² $a = \frac{GM}{R^2}$				
			• ³ apply Newton's inverse law of gravitation at the satellite and equate with angular acceleration	$\bullet^3 \frac{GM}{\left(pR\right)^2} = \omega^2 pR$				
			• ⁴ combine equations and substitute value of ω	• ⁴ $\frac{aR^2}{\left(pR\right)^2} = \left(\frac{1}{1000}\right)^2 pR$				
			• ⁵ rearrange to the required result	• ⁵ $\frac{a}{p^2} = \frac{1}{1000^2} pR$ leading to $R = \frac{1000^2 a}{p^3}$				
Note	s:			-				
Acce	Accept the use of k instead of GM at \bullet^2 and \bullet^3							
Comr	nonly	Obse	erved Responses:					

Q	uestic	on	Generic scheme	Illustrative scheme	Max mark		
18.	(a)		• ¹ resolve forces perpendicular to plane for full box	• ¹ $R = 60g \cos 10^{\circ}$	5		
			• ² resolve forces parallel to plane for full box	• ² $\mathbf{P} = 60g\sin 10^\circ + \mu \mathbf{R}$			
			• ³ resolve forces parallel to plane for empty box	• ³ Q + 40g sin 10° = μ (40g cos 10°)			
			• ⁴ equate P to 5Q	• ⁴ $\frac{60g(\sin 10^\circ + \mu \cos 10^\circ)}{= 5(40g(\mu \cos 10^\circ - \sin 10^\circ))}$			
			• ⁵ rearrange and calculate value of μ	• ⁵ $\mu = 0.327$			
Note	s:	L					
1. Ap	propr	iate w	orking must appear after • ⁴ has been a	warded before the award of \bullet^5 .			
Com	monly	' Obse	rved Responses:				
	(b)		• ⁶ set up equation of motion for system under tension	• ⁶ 300 - 60g($\mu \cos 10^\circ + \sin 10^\circ$) = 60 <i>a</i>	6		
			 ⁷ calculate acceleration for system under tension 	• ⁷ $a = 0.142$			
			 ⁸ calculate distance travelled by boxes before cable snaps 	• ⁸ $s = 7.1$			
			 ⁹ calculate velocity of boxes at the point the cable snaps 	• ⁹ v=1.42			
			• ¹⁰ calculate acceleration for system moving under gravity	• ¹⁰ $a = -4.86$			
			• ¹¹ calculate remaining distance travelled and total distance	• ¹¹ 7.31 metres			
Note	s:						
1. At	1. At \bullet^{11} , accept any answer that rounds to 7.3.						
Com	monly	v Obse	rved Responses:				
Value a = 0	Values with exact coefficient of friction are as follows: a = 0.137, s = 6.89, v = 1.37, a = -4.86, 7.08						

Question		on	Generic scheme	Illustrative scheme	Max mark
19.	(a)	(i)	• ¹ interpret given information	$\mathbf{v}_{Q} = \begin{pmatrix} -18\\ 0 \end{pmatrix}$ $\mathbf{v}_{Q} = \begin{pmatrix} 20\sin 15^{\circ}\\ 20\cos 15^{\circ} \end{pmatrix}$	3
			• ² find vector for velocity of P	$\bullet^2 \begin{pmatrix} -12.8 \\ 19.3 \end{pmatrix}$	
			• ³ find speed of P	• ³ 23.2 kmh ⁻¹	
		(ii)	• ⁴ find direction of P	• ⁴ Bearing: 326.4°	1
Alter	nativ	e met	hod		
	(a)	(i)	• ¹ construct triangle with Q brought to rest	• ¹ $-v_{Q}$	3
			 ² use cosine rule to start to find magnitude of vector for velocity of P 	• ² $\sqrt{18^2+20^2-2\times18\times20\times\cos\ldots}$	
			• ³ substitute correct angle of 75° and calculate speed	• ³ 23.2 kmh ⁻¹	
		(ii)	• ⁴ find direction of P	• ⁴ Bearing: 326.4°	1

Q	uestic	on	Generic scheme Illustrative scher	ne Max mark
19.	(b)		• ⁵ express displacement for both boats after <i>t</i> hours $\mathbf{r}_{p} = \begin{pmatrix} -12.8t \\ 19.3t \end{pmatrix}$ $\mathbf{r}_{Q} = \begin{pmatrix} -12\sin 70^{\circ} - 18t \\ 12\cos 70^{\circ} \end{pmatrix}$)
			• ⁶ state and simplify expression for relative displacement • ⁶ $Q^{r_P} = \begin{pmatrix} -5.2t - 12\sin 70 \\ 12\cos 70^\circ - 19.3 \end{pmatrix}$	$\left(\begin{array}{c} 0^{\circ} \\ t \end{array} \right)$
			• ⁷ use appropriate method to minimise displacement $e^{7} \left \mathcal{Q}^{\mathbf{r}_{P}} \right ^{2} = \left(-5.2t - 12 \sin^{2} + \left(12 \cos 70 - 12 \sin^{2} + 12 \cos^{2} - 12 \sin^{2} - 12 \sin^{2}$	$(70)^2$ - 19.3 t) ²
			• ⁸ differentiate and equate to zero to minimise displacement • ⁸ $\frac{d}{dt} _{v}\mathbf{r}_{P} ^{2} = 799.06t - 4$	1.15 = 0
			• ⁹ interpret answer to give time at which they are closest.	
Alter	nativ	e met	thod 1	
			• ⁵ assemble facts and know to use PQ and $_{P}v_{Q}$ • ⁵ Q P	5 _P v _Q
			• ⁶ establish suitable right-angled triangle for closest approach Q 12 km	P_{V_Q}
			• ⁷ calculate angle at P • ⁷ 85°	
			• ⁸ calculate closest approach • ⁸ 1.05 km	
			• ⁹ state time • ⁹ 12:03 pm	

Question			Generic scheme	Illustrative scheme	Max mark		
19.	(b)		(continued)				
Alter	nativ	e met	hod 2	-			
			• ⁵ express displacement for both boats after <i>t</i> hours	$\mathbf{r}_{P} = \begin{pmatrix} -12.8t \\ 19.3t \end{pmatrix}$ $\mathbf{r}_{Q} = \begin{pmatrix} -12\sin 70^{\circ} - 18t \\ 12\cos 70^{\circ} \end{pmatrix}$	5		
			• ⁶ state and simplify expression for relative displacement	• $Q^{\mathbf{r}} P = \begin{pmatrix} -5.2t - 12\sin 70^{\circ} \\ 12\cos 70^{\circ} - 19.3t \end{pmatrix}$			
			• ⁷ use appropriate method to minimise displacement	• ⁷ eg $_{Q}\mathbf{r}_{P} \cdot _{P}\mathbf{v}_{Q} = 0$			
			• ⁸ find expression for scalar product	• ⁸ -399.76 t + 20.92 = 0			
			• ⁹ interpret answer to give time at which they are closest.	• ⁹ 12:03 pm			

Question		'n	Generic scheme	Illustrative scheme	Max mark		
20.	(a)		• ¹ apply Newton's second law with substitution for tractive force	• ¹ $\frac{P}{V} - \mu R = ma$	2		
			• ² substitute for normal reaction force and obtain expression	• ² $\frac{P}{V} - \mu mg = ma$ leading to P = mV(a + 0.1g)			
	(b)		 ^{apply Newton's second} law parallel to the slope 	• ³ $\frac{3P}{V} - \mu R - mg\sin\theta = ma$	4		
			• ⁴ resolve perpendicular to the slope	• ⁴ $R = mg \cos \theta$			
			 ⁵ combine equations and substitute previous expression 	• $5\frac{3mV(a+\mu g)}{V} - \mu mg\cos\theta - mg\sin\theta = ma$			
			• ⁶ calculate acceleration	• ⁶ 1.40 ms ⁻²			
Notes:							
Com	Commonly Observed Responses:						

[END OF MARKING INSTRUCTIONS]