2023 Mathematics of Mechanics

Advanced Higher

Finalised Marking Instructions

© Scottish Qualifications Authority 2023
These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments.

The information in this document may be reproduced in support of SQA qualifications only on a noncommercial basis. If it is reproduced, SQA must be clearly acknowledged as the source. If it is to be reproduced for any other purpose, written permission must be obtained from permissions@sqa.org.uk.

General marking principles for Advanced Higher Mathematics of Mechanics

Always apply these general principles. Use them in conjunction with the detailed marking instructions, which identify the key features required in candidates' responses.

The marking instructions for each question are generally in two sections:
generic scheme - this indicates why each mark is awarded
illustrative scheme - this covers methods which are commonly seen throughout the marking
In general, you should use the illustrative scheme. Only use the generic scheme where a candidate has used a method not covered in the illustrative scheme.
(a) Always use positive marking. This means candidates accumulate marks for the demonstration of relevant skills, knowledge and understanding; marks are not deducted for errors or omissions.
(b) If you are uncertain how to assess a specific candidate response because it is not covered by the general marking principles or the detailed marking instructions, you must seek guidance from your team leader.
(c) One mark is available for each • There are no half marks.
(d) If a candidate's response contains an error, all working subsequent to this error must still be marked. Only award marks if the level of difficulty in their working is similar to the level of difficulty in the illustrative scheme.
(e) Only award full marks where the solution contains appropriate working. A correct answer with no working receives no mark, unless specifically mentioned in the marking instructions.
(f) Candidates may use any mathematically correct method to answer questions, except in cases where a particular method is specified or excluded.
(g) If an error is trivial, casual or insignificant, for example $6 \times 6=12$, candidates lose the opportunity to gain a mark, except for instances such as the second example in point (h) below.
(h) If a candidate makes a transcription error (question paper to script or within script), they lose the opportunity to gain the next process mark, for example

The following example is an exception to the above

This error is not treated as a transcription error, as the candidate deals with the intended quadratic equation. The candidate has been given the benefit of the

$$
\begin{aligned}
x^{2}+5 x+7 & =9 x+4 \\
x-4 x+3 & =0 \\
(x-3)(x-1) & =0 \\
x & =1 \text { or } 3
\end{aligned}
$$ doubt and all marks awarded.

(i) Horizontal/vertical marking

If a question results in two pairs of solutions, apply the following technique, but only if indicated in the detailed marking instructions for the question.

Example:

$$
\begin{array}{lll}
& .5 & \bullet 6 \\
.{ }^{5} & x=2 & x=-4 \\
\cdot{ }^{6} & y=5 & y=-7
\end{array}
$$

Horizontal: ${ }^{5} x=2$ and $x=-4 \quad$ Vertical: ${ }^{5} x=2$ and $y=5$

$$
\bullet^{6} y=5 \text { and } y=-7 \quad \bullet^{6} x=-4 \text { and } y=-7
$$

You must choose whichever method benefits the candidate, not a combination of both.
(j) In final answers, candidates should simplify numerical values as far as possible unless specifically mentioned in the detailed marking instruction. For example

$$
\begin{array}{ll}
\frac{15}{12} \text { must be simplified to } \frac{5}{4} \text { or } 1 \frac{1}{4} & \frac{43}{1} \text { must be simplified to } 43 \\
\frac{15}{0 \cdot 3} \text { must be simplified to } 50 & \frac{4 / 5}{3} \text { must be simplified to } \frac{4}{15}
\end{array}
$$

$\sqrt{64}$ must be simplified to 8^{*}
*The square root of perfect squares up to and including 144 must be known.
(k) Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.
(I) Do not penalise candidates for any of the following, unless specifically mentioned in the detailed marking instructions:

- working subsequent to a correct answer
- correct working in the wrong part of a question
- legitimate variations in numerical answers/algebraic expressions, for example angles in degrees rounded to nearest degree
- omission of units
- bad form (bad form only becomes bad form if subsequent working is correct), for example
$\left(x^{3}+2 x^{2}+3 x+2\right)(2 x+1)$ written as
$\left(x^{3}+2 x^{2}+3 x+2\right) \times 2 x+1$
$=2 x^{4}+5 x^{3}+8 x^{2}+7 x+2$
gains full credit
- repeated error within a question, but not between questions or papers
(m) In any 'Show that...' question, where candidates have to arrive at a required result, the last mark is not awarded as a follow-through from a previous error, unless specified in the detailed marking instructions.
(n) You must check all working carefully, even where a fundamental misunderstanding is apparent early in a candidate's response. You may still be able to award marks later in the question so you must refer continually to the marking instructions. The appearance of the correct answer does not necessarily indicate that you can award all the available marks to a candidate.
(o) You should mark legible scored-out working that has not been replaced. However, if the scoredout working has been replaced, you must only mark the replacement working.
(p) If candidates make multiple attempts using the same strategy and do not identify their final answer, mark all attempts and award the lowest mark. If candidates try different valid strategies, apply the above rule to attempts within each strategy and then award the highest mark.

For example:

Strategy 1 attempt 1 is worth 3 marks.	Strategy 2 attempt 1 is worth 1 mark.
Strategy 1 attempt 2 is worth 4 marks.	Strategy 2 attempt 2 is worth 5 marks.
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

In this case, award 3 marks.

Marking Instructions for each question

| Question | | Generic scheme | Illustrative scheme | Max
 mark |
| :--- | :--- | :--- | :--- | :---: | :---: |
| 3. | (a) | \bulletapply condition for maximum
 height and state initial vertical
 velocity
 \bullet^{2} substitute into equation of
 motion and complete | $\bullet 1$
 implied by \bullet^{2}
 im stated or | $\mathbf{2}$ |
| $\bullet^{2} 0=(U \sin \theta)^{2}+2(-g) H$ | | | | |
| leading to $H=\frac{U^{2} \sin ^{2} \theta}{2 g}$ | | | | |

Alternative method for (a)

(a)	- ${ }^{1}$ apply condition for maximum height and rearrange to find expression for time -2 substitute into expression for height and complete	$\begin{aligned} & \quad-g t+U \sin \theta=0 \\ & \bullet \\ & \bullet \\ & \bullet \\ & \bullet \\ & \Rightarrow H=\frac{U \sin \theta}{g} \\ & \left.\Rightarrow H=\frac{U \sin \theta}{g}\right) \sin \theta-\frac{1}{2} g\left(\frac{U \sin \theta}{g}\right)^{2} \\ & 2 g \end{aligned}$	2

Notes:

- Treat $y=\frac{U^{2} \sin ^{2} \theta}{2 g}$ as bad form and award \bullet^{2}

| (b) | $\bullet 3$ find the maximum height from
 level ground
 $\bullet 4$
 \bullet interpret new situation | $\bullet^{4} 33.2 \mathrm{~m}$ | $\mathbf{2}$ |
| :--- | :--- | :--- | :--- | :--- |

Notes:

1. Candidates may not ever calculate the maximum height from level ground prior to a correct answer. If this is the case, then \bullet^{3} can be awarded for $\frac{40^{2} \sin ^{2} 27}{2 \times 9.8}$

Question		Generic scheme	Illustrative scheme	Max mark
4.	(a)	\bullet^{1} differentiate to find velocity	$\bullet^{1} \mathbf{2 i}+6 t \mathbf{j}-10 t \mathbf{k}$	$\mathbf{2}$
\bullet^{2} substitute for time	$\bullet^{2} \mathbf{2 i}+18 \mathbf{j}-30 \mathbf{k} \mathrm{~ms}^{-1}$			

Notes:

1. Candidates gain no marks for substituting values into the original vector from the question or an integral of it

Notes:

1. Award \bullet^{2} and \bullet^{3} if no limits appear and candidate returns to original variable at \bullet^{4}.
2. For incorrect limits at \bullet^{2} where candidate returns to original variable at \bullet^{4}, withhold \bullet^{2}.
3. For incorrect limits at \bullet^{2} where candidate does not return to original variable at \bullet^{4}, withhold \bullet and \bullet^{4}.
4. Where candidates attempt to integrate an expression containing both u and x, only \bullet^{1} and \bullet^{2} are available.

Question		Generic scheme	Illustrative scheme	Max mark
6.	(a)	- ${ }^{1}$ calculate ω -2 calculate amplitude	-1 16 stated or implied by •2 - $2 \frac{1}{8}$ or 0.125 metres	2
	(b)	\bullet^{3} calculate maximum acceleration	- ${ }^{3} 32 \mathrm{~ms}^{-2}$	1
Notes: 1. Do not accept -32 or ± 32 for \bullet^{3}.				
7.		- ${ }^{1}$ evidence use of quotient rule with denominator and one term of numerator correct -2 complete differentiation -3 set differential equal to zero and solve	- $\frac{\left(t^{2}+3\right) \times 5-\ldots}{\left(t^{2}+3\right)^{2}}$ or $\frac{\ldots-5 t \times 2 t}{\left(t^{2}+3\right)^{2}}$ - $2 \frac{\left(t^{2}+3\right) \times 5-5 t \times 2 t}{\left(t^{2}+3\right)^{2}}$ - ${ }^{3} \sqrt{3}$	3
Notes: 1. Do not accept $\pm \sqrt{3}$ for \bullet^{3}.				

Question		Generic scheme	Illustrative scheme	Max mark
8.	(a)	- ${ }^{1}$ determine the position of the boat at time t \bullet^{2} determine the relative position of the boat and the whale \bullet^{3} determine the magnitude squared - ${ }^{4}$ differentiate and equate to 0 $\bullet{ }^{5}$ determine the minimum distance	- $1\binom{4 t+5}{t+2}$ $\cdot 2\binom{4 t-55}{t-38}$ $\bullet^{3}(4 t-55)^{2}+(t-38)^{2}$ - $43 t-516=0$ or equivalent. $\cdot{ }^{5} 23.5$ or $\frac{97 \sqrt{17}}{17}$ metres.	5
Notes:				
	(b)	- ${ }^{6}$ state appropriate assumption	$\cdot{ }^{6}$ eg the whale is a point OR the whale remains stationary	1
Notes:				

Question			Generic scheme	Illustrative scheme	Max mark
9	9. (a)	(a)	Method 1 - ${ }^{1}$ recognise numerator as differential of denominator and integrate -2 calculate value of constant	Method 1 - ${ }^{1} \ln \left(2 t^{2}+17 t+8\right)+c$ - $\quad c=\ln \frac{1}{2}$ or equivalent.	2
			Method 2 -1 rewrite using partial fractions and integrate - ${ }^{2}$ calculate value of constant	Method 2 - ${ }^{1} \ln (2 t+1)+\ln (t+8)+c$ -2 $c=\ln \frac{1}{2}$ or equivalent.	
Notes: 1. Do not penalise the omission of $+c$ at \bullet^{1}.					
		(b)	\bullet^{3} calculate displacement	$\cdot^{3} \ln \left(\frac{77}{2}\right) \mathrm{m}$ or 3.65 m	1
Notes:					

Question		Generic scheme	Illustrative scheme	Max mark
10.	(a)	- ${ }^{1}$ use appropriate equation of motion and substitute -2 find displacement of particle D -3 find initial speed of particle D	$\begin{aligned} & \bullet 0=10.5^{2}-2 g s \\ & \bullet^{2} 3.625 \text { or } \frac{29}{8} \\ & \bullet^{3} 8.43 \mathrm{~ms}^{-1} \text { or } \frac{7 \sqrt{145}}{10} \mathrm{~ms}^{-1} \end{aligned}$	3
Notes:				
	(b)	-4 find expressions for height at any time t ${ }^{5}$ equate expressions and find value of t - ${ }^{6}$ find velocity of C at this time ${ }^{-7}$ find velocity of D at this time		4
Notes: 1. If this question is done with fractions throughout then speeds are identical in (b). However, candidates are likely to round answers in (a). Accept appropriate rounding throughout this question and in particular when stating speeds are equal. Candidates must show that bodies are moving in opposite directions. 2. ${ }^{7}$ can be awarded for numerical values that are equal to 2 significant figures and differ in sign.				
Commonly Observed Responses:				

Question		Generic scheme	Illustrative scheme	Max mark
11.	(a)		$\bullet \bullet^{1}$ calculate displacement	$\bullet\binom{-4}{16}$
$\mathbf{~}$				
Notes:				

Question		Generic scheme	Illustrative scheme	Max mark
12.		- ${ }^{1}$ start process of implicit differentiation -2 complete implicit differentiation \bullet^{3} determine expression for $\frac{d y}{d x}$ in terms of x and y - ${ }^{4}$ calculate values for k when $x=2$ - ${ }^{5}$ determine value of k	$\bullet^{1} \ldots+2 y \frac{d y}{d x} \ldots-4 \frac{d y}{d x} \ldots$ - $3 x^{2}+2 y \frac{d y}{d x}+2-4 \frac{d y}{d x}=0$ - $\frac{d y}{d x}=\frac{3 x^{2}+2}{4-2 y}$ or equivalent - ${ }^{4}-3,7$ - 5 when $k=-3, \frac{d y}{d x}>0$,	5
Notes: 1. The correct value of k must be selected for \bullet^{5} to be awarded				

Question		Generic scheme	Illustrative scheme	Max mark
13.		- ${ }^{1}$ use Newton's inverse law to determine constant - ${ }^{2}$ use Newton's inverse law to determine acceleration due to gravity of satellite -3 substitute into equation for angular velocity - ${ }^{4}$ use equation for period leading to answer	-1 $\frac{G m M}{R^{2}}=3 m$ stated or implied by •2 - ${ }^{2} g_{s}=\frac{1}{12}$ $\bullet^{3} \frac{1}{12}=\omega^{2} \times 6 R$ - $\frac{2 \pi}{\sqrt{\frac{1}{72 R}}}$ leading to $12 \pi \sqrt{2 R}$	4

Notes:

1. Candidates may not ever calculate the acceleration due to gravity of satellite prior to a correct answer. If this is the case, then \bullet^{2} can be awarded for $\frac{3 m R^{2}}{(6 R)^{2}}=m g_{s}$

Commonly Observed Responses:

For incorrect differentiation eg $\frac{d y}{d x}=-\frac{2}{3} A e^{-\frac{2}{3} x}-\frac{2}{3} B x e^{-\frac{2}{3} x}, \bullet^{4}$ is available as a follow through but \bullet^{5} is unavailable

Notes:

1. Only \bullet^{1} and \bullet^{2} are available for an approach involving equations of motion rather than momentum

Question		Generic scheme	Illustrative scheme	Max mark
17.	(a)	-1 start integration by parts	$\cdot x\left(-\frac{1}{2} \cos 2 x\right) \ldots$	3
		${ }^{2}$ 2 complete first application	$\bullet^{2}-\int-\frac{1}{2} \cos 2 x d x$	
		- ${ }^{3}$ complete integration	$\text { - }-\frac{1}{2} x \cos 2 x+\frac{1}{4} \sin 2 x+c$	

Notes:

1. Do not penalise the omission of $d x$ at \bullet^{2}
2. - ${ }^{3}$ cannot be awarded if the constant of integration is omitted

(b)	- ${ }^{4}$ substitute for volume of revolution - ${ }^{5}$ substitute limits - ${ }^{6}$ evaluate volume	$\begin{aligned} & \cdot \pi \int_{0}^{1} x \sin 2 x d x \\ & \cdot 5\left[\left(-\frac{1}{2} \cos 2+\frac{1}{4} \sin 2\right)-0\right] \\ & \bullet 1.37 \end{aligned}$	3

Notes:

3. Do not penalise the omission of $d x$ at \bullet^{4}
4. At \bullet^{6} do not accept a multiple of π
5. If an earlier error leads to a negative volume, \bullet^{6} can only be awarded if the candidate subsequently acknowledges that the volume can't be negative

Commonly Observed Responses:

	uest	Generic scheme	Illustrative scheme	Max mark
18.	(a)	- ${ }^{1}$ consider energy at top of circle \bullet^{2} equate to energy at bottom of circle where max speed occurs - ${ }^{3}$ find expression for max speed	- $\frac{1}{2} m(2 \sqrt{3 g r})^{2}+2 m g r$ - $\frac{1}{2} m(2 \sqrt{3 g r})^{2}+2 m g r=\frac{1}{2} m u^{2}$ - $4 \sqrt{g r} \mathrm{~ms}^{-1}$	3

Notes:

1. Do not penalise $\sqrt{16 g r}$ at \bullet^{3}.

Notes:

1. \bullet^{8} can only be awarded for appropriate working prior to the statement of the answer.

		(ii)	\bullet Statement about motion	\bullet particle now behaves as a projectile OR	$\mathbf{1}$		
the only force acting on the							
particle is gravity so motion is							
parabolic						\quad	
:---							

Notes:

Question		Generic scheme	Illustrative scheme	Max mark
19.	(a)	-1 Use Hooke's Law with substitution -2 Resolve forces vertically and obtain expression	- $\frac{2 m g x}{l}$ -2 $\frac{2 m g x}{l}=m g$ leading to $\frac{l}{2}$	2

Notes:

1. An approach involving elastic potential energy gains no marks as it is not valid

(b)	${ }^{-3}$ equate lengths - ${ }^{4}$ resolve forces vertically $\bullet{ }^{5}$ combine equations and substitute ${ }^{\bullet 6}$ obtain expression	- $32 l+x_{1}+x_{2}=3 l$ stated or implied by ${ }^{5}$ -4 $T_{1}=T_{2}+m g$ - $5 \frac{2 m g x_{1}}{l}=\frac{2 m g\left(l-x_{1}\right)}{l}+m g$ - $6 \frac{3 l}{4}$	4

Notes:

Commonly Observed Responses:

[END OF MARKING INSTRUCTIONS]

