Υ	Q	Momentum and Impulse	
24	3	Particle A has a mass of 30 grams and is travelling in a straight line with velocity $u \text{m s}^{-1}$.	
		It collides with a stationary particle B and rebounds with a speed of $\frac{u}{3}$ ms ⁻¹ in the opposite direction.	
		Particle B begins to move with a velocity of $\frac{u}{2}$ ms ⁻¹ in the original direction of motion.	
		Calculate the mass of particle B.	3
23	1	An air hockey pusher of mass 48 grams is moving freely with a velocity of 16i cms ⁻¹ when it collides with a stationary puck of mass 32 grams.	
		Immediately after the collision the pusher has a velocity of $(4i-8j)$ cms ⁻¹ .	
		Calculate the magnitude of the velocity of the puck immediately after the collision.	3
23	15	A bullet of mass m kg is fired at a block of wood of mass M kg which hangs vertically and at rest at the end of a light inextensible string.	
		The bullet enters the block horizontally while travelling at a speed of $u {\rm m s^{-1}}$, and becomes embedded in the block.	
		The block then swings until it reaches a height h metres above its original position.	
		Show that $h = \frac{1}{2g} \left(\frac{mu}{M+m} \right)^2$.	5
22	1	An object of mass 8 kg is at rest on a smooth horizontal surface. A constant horizontal force of magnitude 65 newtons is applied for 1.2 seconds.	
		(a) Calculate the speed of the object after this time.	2
		The object then hits a wall and rebounds in the opposite direction with no loss of energy.	
		(b) Calculate the magnitude of the impulse of the wall on the object.	2
19	1	A body of mass 4 kg is moving with initial velocity $(3i+2j)$ ms ⁻¹ . It is given an impulse of $(6i+j)$ Ns.	
		Calculate the magnitude of the final velocity and the angle it makes with the x -axis.	4
18	3	An object of mass 10kg is projected along a rough horizontal surface with an initial speed of 12m s^{-1} . The coefficient of friction between the object and the surface is 0.25 .	
		After travelling a distance of 20 metres along this rough surface it collides and coalesces with a stationary object of mass 5 kg.	
		Find the speed of the combined objects immediately after the collision.	5

18	17	A box of mass $m \log s$ is set in motion with an initial impulse I . As it moves along the surface it experiences a resistive force proportional to the square of its velocity $v \operatorname{ms}^{-1}$.	
		By setting up a differential equation, show that the velocity of the box after t seconds can be expressed as $v = \frac{mI}{Ikt + m^2}$, where k is a constant and t is measured from the moment of impulse.	5
17	8	Two particles, X and Y, have masses of 0.2kg and 0.5kg respectively.	
		They are moving up a smooth plane AB, inclined at 30° to the horizontal as shown in the diagram.	
		В	
		X Y	
		A	
		The particles collide 3.5 metres from B when X is moving with a speed of $6 \mathrm{ms^{-1}}$ and Y is moving with a speed of $3 \mathrm{ms^{-1}}$.	
		This collision causes X to come instantaneously to rest while Y continues to travel up the slope.	
		Show that in the subsequent motion, Y comes to rest before reaching B.	6
16	1	A bicycle and rider have a total mass of 70 kg. They are travelling at $12\mathrm{ms^{-1}}$. The cyclist applies the brakes for 1.5 seconds, resulting in a total resistive force of 180 newtons.	
		What is the speed of the bicycle after 1.5 seconds?	3
16 Sp	1	A curling stone, P, of mass 18 kg is moving with velocity $\begin{pmatrix} 0 \\ -1 \cdot 1 \end{pmatrix}$ m s ⁻¹ relative to a	
		suitable set of coordinate axes. It collides with a stationary curling stone, Q, of	
		mass 20 kg. Q then moves off with velocity $\begin{pmatrix} 0.36 \\ -0.72 \end{pmatrix}$ m s ⁻¹ .	
		Calculate the speed with which P travels immediately after impact.	3