B2	Answers to the Calculator Paper	
1	Mark 1 know how to find a percentage decrease $\quad 100-4.25=95.75 \%=0.9575$ Mark 2 use this answer to find value over three years 176500×0.9675^{3} or $\left(\frac{95.75}{100}\right)^{3}$ Mark 3 calculate the answer £154939. 11 2 marks will be given for a percentage increase $176500 \times 1.0425^{3}=£ 199973.81$	
2	Mark 1 form an equation Mark 2 solve for b (or x) $\begin{aligned} & -22=5+3 b \\ & =-27=3 b \quad \boldsymbol{b}=-\mathbf{9} \end{aligned}$	
3	Mark 1 form an equation Mark 2 form a second equation $\begin{aligned} & 6 p+4 t=2.68 \\ & 5 p+3 t=2.15 \end{aligned}$ Mark 3 show scaling for the simultaneous equations $\begin{array}{ll} 30 p+20 t=13.40 \text { or } & 18 p+12 t=8.04 \\ 30 p+18 t=12.90 & \\ 20 p+12 t=8.60 \end{array}$ Mark 4 and 5 follow a valid strategy to find values for p and for $t \quad p=0.28, t=0.25$	
4	Mark 1 correct substitution into the quadratic formula Mark 2 evaluate discriminant $b^{2}-4 a c=124$ Mark 3 calculate both roots correct to one decimal place $x=2.522588 \ldots \text { and } x=-1.189254 \ldots \text { so } \boldsymbol{x}=2.5 \text { and }-1.2$	
5	Mark 1 compare the median "On average the runner's 10 K times were faster in February (his times were lower)" Mark 2 compare the SIQR "His times were more consistent in February"	
6	Mark 1 identify the angles in one of the triangles in the octagon. The centre angle $\angle G O F$ is $360^{\circ} \div 8=45^{\circ}$ This triangle is isosceles so $\angle O G F=\angle O F G=135^{\circ} \div 2=67.5^{\circ}$ Mark 2 identify angle EFI Mark 3 find the shaded angle $\begin{aligned} & \angle E F I=180^{\circ}-2 \times 67.5^{\circ}=45^{\circ} \\ & \angle F E I=180^{\circ}-45^{\circ}-37^{\circ}=\mathbf{9 8}^{\circ} \end{aligned}$ Other methods can be used to identify the shaded angle. Angles must either be marked on the diagram or clearly stated in the answer i.e. $\angle \mathrm{GOF}$ is 45°	
7	Mark 1 multiply by 3 to remove the fraction $4(1-x)=6$ Mark 2 expand bracket $4-4 x=6$ Mark 3 solve the equation $-4 x=2, \boldsymbol{x}=-\frac{1}{2}$	

8	Radius of the hemisphere and the cone is $30-22=8 \mathrm{~cm}$ Mark 1 substitute into the formula for a hemisphere $V_{h s}=\frac{1}{2} \times \frac{4}{3} \times \pi \times 8^{3}$ or Mark 2 substitute into the formula for a cone $V_{\text {cone }}=\frac{1}{3} \times \pi \times(8)^{2} \times 22$ Mark 3 know to add the resulting volumes Mark all calculations correct $V_{\text {cone }}+V_{h s}=1474.454 . .+1072.330 . .=2546.784$ Mark 5 answer with correct units and rounding $\quad \boldsymbol{V}_{\text {cone }}=\mathbf{2 5 0 0} \mathbf{c m}^{\mathbf{3}}$ Last mark is only available for correct rounding and units.
9	Mark 1 is for the x and y intercepts $(0,0)$ and $(6,0)$ Mark 2 is for the turning point $(3,-9)$ Mark 3 is for all of this information on a correctly annotated u-shaped parabola.
10	Mark 1 use of Pythagoras $18^{2}+10^{2}+10^{2}$ or $18^{2}+10^{2}$ or $10^{2}+10^{2}$ Mark 2 use of Pythagoras in 3 dimensions $18^{2}+10^{2}+10^{2}=524$ or $18^{2}+10^{2}=424$, so $424+10^{2}=524$ Mark 3 find the length of the diagonal $\sqrt{524}=\mathbf{2 2 . 8 9} \mathbf{~ c m}$
11	Mark 1 substitute into the formula for arc length $17.9=\frac{110}{360} \times \pi \times D$ Mark 2 Rearrange the equation to find the diameter $D=\frac{17.9 \times 360}{110 \times \pi}=18.647$ Mark 3 find the length of the radius radius $\boldsymbol{i s} \mathbf{9 . 3 ~ c m}$
12	Mark 1 calculate the discriminant $b^{2}-4 a c=7^{2}-4 \times 3 \times 5=-11$ Mark 2 state the nature of the roots there are no real roots (roots are non-real).

