B1	Answers to the Non-Calculator Paper
1	Mark 1 change the mixed fraction and change the divide to multiply $\quad \frac{9}{5} \times \frac{10}{3}=\frac{90}{15}$ Mark 2 consistent answer in the simplest form 6
2	Mark 1 factorise the difference of two squares $(x+y)(x-y)$ Mark 2\&3 factorise the trinomial $(x-8)(x+6)$
3	Mark 1 start to expand (evidence of any 3 correct terms) Mark 2 all terms correct Mark 2 collect like terms $\begin{aligned} & 2 x^{2}-10 x+x-5+2 x^{2}+2 \\ & \mathbf{4} \boldsymbol{x}^{2}-\mathbf{9 x}-\mathbf{3} \end{aligned}$
4	Mark 1 find the gradient between two points $m=\frac{8}{-2} \text { or }-4$ Mark 2 substitute gradient and one point into the equation of the straight line. $9=-4 \times-5+c \text { or } y-9=-4(x+5) \text { etc }$ Mark 3 find c and state the equation in the simplest form $c=-11, \quad y=-\mathbf{4 x}-\mathbf{1 1}$
5	
6	Mark 1 know how to rationalise the denominator $\frac{6}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=\frac{6 \sqrt{3}}{3}$ Mark 2 state answer in simplest form $\frac{6 \sqrt{3}}{3}=\mathbf{2} \sqrt{\mathbf{3}}$
7	Mark 1 know that the new price is $80 \%=22.80$ Mark 2 use a valid strategy to find 10% or 20% etc $20 \%=22.80 \div 4 \quad 20 \%=5.70 \text { or } 10 \%=22.80 \div 8,10 \%=2.85$ Mark 3 calculate answer correctly £28.50
8	Mark 1 one term correct $3^{2}=9$ or $\left(p^{4}\right)^{2}=p^{8}$ Mark 2 both terms present and correct $\mathbf{9} \boldsymbol{p}^{8}$
9	Mark 1 multiply through by x^{2} $F x^{2}=D-1$ Mark 2 add 1 $F x^{2}+1=D, \quad \boldsymbol{D}=\boldsymbol{F} \boldsymbol{x}^{2}+\mathbf{1}$
10	Mark 1 correct bracket with square Mark 2 completed square Mark 3\&4 coordinates of the turning point are Mark 5 coordinates of the y-intercept. $\begin{aligned} & (x-2)^{2} \\ & (x-2)^{2}-\mathbf{1} \\ & (\mathbf{2},-\mathbf{1}) \\ & (\mathbf{0}, \mathbf{3}) \end{aligned}$ If you wish you can factorise $y=x^{2}-4 x+3$ to give $y=(x-3)(x-1)$. When this is set equal to zero it gives the roots $x=3$ and $x=1$. Thus the x-coordinate of the turning point is $x=2$ which can be substituted into the equation to give $(2,-1)$

