C1	Answers to the Non-Calculator Paper	
1	Mark 1 correct denominator $6\frac{1}{5} - \frac{3}{4} = 6\frac{4}{20} - \frac{15}{20}$	
	Mark 2 consistent answer in the simplest form $6\left(-\frac{11}{20}\right) = 5\frac{9}{20}$ or $\frac{109}{20}$	
2	Mark 1 start to expand $(x-3)^2$ Mark 2 collect terms $(x-3)(x-3) + 15 = x^2 - 6x + 9 + 15$ $x^2 - 6x + 24$	
2		
3	Mark 1 show scaling for the simultaneous equations 12x + 15y = 66 or $4x + 5y = 22$	
	12x + 2y = 14 $30x + 5y = 35$	
	Mark 2 follow a valid strategy to find values for y and for x 12 12 12 12 12 12 12 12	
	$13y = 52 \text{ so } y = 4$ or $26x = 13 \text{ so } x = \frac{1}{2}$,	
	Mark 3 Both values correct for this simultaneous equation $x = \frac{1}{2}$, $y = 4$	
4	Use two points on the line $(3,70)$ and $(6,40)$	
	Mark 1 find the gradient between two points $m = \frac{70-40}{3-6} = \frac{30}{-3} = -10$	
	Mark 2 substitute gradient and one point into the equation of the straight line.	
	$70 = -10 \times 3 + c \text{ or } y - 70 = -10(x - 3) \text{ etc}$	
	Mark 3 find $c = 100$ and state the equation in the correct form $S = -10R + 100$	
	A final answer in the form $y = -10x + 100$ will lose mark 3.	
5	Mark 1 expand the brackets $5 - x + 3 \le x + 10$	
	Mark 2 collect like terms $-2 \le 2x$ or $-2x \le 2$ Mark 2 collect like terms1 \le x < x < x < 2	
6	Mark 2 collect like terms $-2 \le 2x$ or $-2x \le 2$ Mark 3 solve the inequality $-1 \le x$ or $x \ge -1$ Mark 1 factorise the trinomial $(x-6)(x-4)$	
	Mark 2&3 use answer from part (a) and factorise the difference of 2 squares	
	$\frac{x^2 - 10 + 24}{x^2 - 36} = \frac{(x - 6)(x - 4)}{(x + 6)(x - 6)}$	
	$x^2 - 36$ (x+6)(x-6)	
	Mark 4 simplify the fraction $\frac{x-4}{x+6}$	
7	Mark 1&2 subtract <i>a</i> then divide by 3 $y - a = 3\sqrt{h}, \frac{y-a}{2} = \sqrt{h}$	
	Mark 3 square the left hand side $\left(\frac{y-a}{3}\right)^2 = h$, $h = \left(\frac{y-a}{3}\right)^2$	
8	Mark 1 simplify the surds $\sqrt{400} = 20$ and $\sqrt{100} = 10$	
	Mark 2 answer $20 - 10 = 10$	
9	Marks 1,2 and 3 use laws of indices $(12 \div 3)v^{3-2}w^{4+2} = 4vw^6$	
10	Mark 1 calculate the discriminant $b^2 - 4ac = (-4)^2 - 4 \times 4 \times 1 = 0$	
	Mark 2 state the nature of the roots there are two real and equal roots.	
	The second mark can be given for "real and equal roots" but not for "two real roots" or	
	"two equal roots)	
•	· · · ·	