2008 Mathematics

Standard Grade Credit

Finalised Marking Instructions

© Scottish Qualifications Authority 2008
The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from the Assessment Materials Team, Dalkeith.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's Assessment Materials Team at Dalkeith may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Special Instructions

1 The main principle in marking scripts is to give credit for the skills which have been demonstrated. Failure to have the correct method may not preclude a pupil gaining credit for the calculations involved or for the communication of the answer.

Care should be taken to ensure that the mark for any question or part question is entered in the correct column, as indicated by the horizontal line.

Where a candidate has scored zero marks for any question attempted, " 0 " should be shown against the answer in the appropriate column.

It is of great importance that the utmost care should be exercised in adding up the marks. Where appropriate, all summations for totals and grand totals must be carefully checked.

2 The answer to one part, correct or incorrect must be accepted as a basis for subsequent dependent parts of a question. Full marks in the dependent part is possible if it is of equivalent difficulty.

3 Do not penalise insignificant errors. An insignificant error is one which is significantly below the level of attainment being assessed.
eg An error in the calculation of $16+15$ would not be penalised at Credit Level.

4 Working after a correct answer should only be taken into account if it provides firm evidence that the requirements of the question have not been met.

5 In certain cases an error will ease subsequent working. Full credit cannot be given for this subsequent work but partial credit may be given.
$6 \quad$ Accept answers arrived at by inspection or mentally, where it is possible for the answer to have been so obtained.

7 Do not penalise omission or misuse of units unless marks have been specifically allocated to units.

8 A wrong answer without working receives no credit unless specifically mentioned in the marking scheme.

The rubric on the outside of the Papers emphasises that working must be shown. In general markers will only be able to give credit to partial answers if working is shown. However there may be a few questions where partially correct answers unsupported by working can still be given some credit. Any such instances will be stated in the marking scheme.

9 Acceptable alternative methods of solution can only be given the marks specified, ie a more sophisticated method cannot be given more marks.

Note that for some questions a method will be specified.

10 In general do not penalise the same error twice in the one question.

11 Accept legitimate variations in numerical/algebraic questions.

12 Do not penalise bad form eg $\sin x^{0}=0 \cdot 5=30^{\circ}$.

13 A transcription error is not normally penalised except where the question has been simplified as a result.

2008 Mathematics SG - Credit Level - Paper 1

Marking Instructions

Award marks in whole numbers only

$\begin{aligned} & \text { Question } \\ & \text { No } \end{aligned}$	Give 1 mark for each -	Illustrations of evidence for awarding each mark
1	Ans: 5.8 - knowing correct order of operations - carrying out both calculations	- must involve a multiplication followed by a subtraction - 5.8
Notes:		
	for 5.8, with or without working	$\text { award } \frac{2}{2}$
(ii)	for 722.1, with or without working	award $\frac{1}{2}$
(iii)	for $18.4(24.7-0.63 \times 10)$, with or without w	rking award $\frac{1}{2}$
	for $22.81(24.7-0.63 \times 3)$, with or without w	award $\frac{1}{2}$
(v)	for $740.37(24.7 \times 30-0.63)$, with working	$\text { award } \frac{1}{2}$
	for a final answer of 18.9	award $\frac{0}{2}$

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
2	Ans: $\quad 5(x-3)(x+3)$ - beginning to factorise - factorised fully	- $5\left(x^{2}-9\right)$ - $5(x-3)(x+3)$
Notes: (i) the $1^{\text {st }}$ mark is available for $5\left(x^{2}-9\right)$ or $(5 x-15)(x+3)$ or $(x-3)(5 x+15)$ (ii) All 3 factors must be shown together to obtain the $2^{\text {nd }}$ mark		

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
$\mathbf{3}$	Ans: $\quad \boldsymbol{H}=\sqrt{\frac{W}{B}}$	
	• beginning to rearrange	$\bullet H^{2}=\frac{W}{B}$
	• completed rearrangement	$\bullet H=\sqrt{\frac{W}{B}}$

Notes:
(i) for $H=\sqrt{\frac{W}{B}}$, with or without working
award $\frac{2}{2}$
(ii) for $H=\frac{\sqrt{W}}{B}$, with or without working award $\frac{1}{2}$
(iii) the $2^{\text {nd }}$ mark is for the square root of the candidate's expression for H^{2}

$\begin{array}{\|l} \hline \text { Question } \\ \text { No } \end{array}$	Give 1 mark for each •	Illustrations of evidence for awarding each mark
4	Ans: $\quad y=-2 x+18$ - gradient - y-intercept - linear equation	- -2 - 18 - $y=-2 x+18$
Notes: (i) (ii) (iii) (iv)	for $y=-2 x+18$, with or without working for $y=-2 x+c$, with or without working for $y=m x+18$, with or without working for an incorrect equation, the $3^{\text {rd }}$ mark can be gradient and y-intercept are consistent with	$\begin{aligned} & \text { award } \frac{3}{3} \\ & \text { award } \frac{1}{3} \\ & \text { award } \frac{1}{3} \end{aligned}$ awarded only if both ated values

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
6 (a)	Ans: $\quad 2(x+8)$ - expression	- $2(x+8)$
(b)	Ans: $0.5 x$ - expression	- $0.5 x$ 1KU
(c)	Ans: 12 kilometres per hour - equating the two distances - collecting like terms - solution	- $2(x+8)+0.5 x=46$ - $2.5 x=30$ - $x=12$
Notes: (i)	for answer of $12 \mathrm{~km} / \mathrm{h}$ without working	award $\frac{1}{3}$

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
7 (a)	Ans: 5 - value	- 5 [$\mathbf{1 K U}$
(b)	Ans: $x+6$ - expression	- $x+6$ 1RE
(c)	Ans: $\quad 7 x+7$ - dealing with mean - find term	- $\frac{-2 x+(x+5)+3^{\text {rd }} \text { term }}{3}=2 x+4$ - $7 x+7$
Notes: (i)	for $7 x+7$, with or without working,	award $\frac{2}{2}$

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
8 (a)	Ans: $\quad(2,0),(8,0)$ - coordinates of Q - coordinates of R	- $(2,0)$ - $(8,0)$
Notes: (i) (ii)	for 2 and 8 for $(0,2)$ and $(0,8)$	award $\frac{1}{2}$ award $\frac{1}{2}$
(b)	Ans: 25 units - axis of symmetry - finding height above x axis - solution	- $x=5$ - $y=9$ - 25 units
Notes: (i) (ii)	for a final answer of 25 , with or without working for a final answer of 9 , with or without working	award $\frac{3}{3}$ award $\frac{2}{3}$

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
9	Ans: $m^{\frac{7}{2}}$ - correct index - solution	- $m^{\frac{1}{2}}$ - $m^{\frac{7}{2}}$
Notes:		

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
10 (a)	Ans: (0,1) - coordinates of C	- $(0,1)$
Notes: (i) accept an answer of $(y=) 1$		
(b)	Ans: $\quad a=4$ - method - processing	- $16=a^{2}$ - $a=4$
Notes: (i)	for $a=4$, with or without working	award $\frac{2}{2}$

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
11	Ans: $\quad 3 \sqrt{2}$ - method - solution - simplification of a surd	- $\mathrm{AC}^{2}+(\sqrt{32})^{2}=(\sqrt{50})^{2}$ - $\sqrt{18}$ - $3 \sqrt{2}$
Notes: (i) (ii) (iii)	for a final answer of $\sqrt{82}$ with working the $3^{\text {rd }}$ mark is available for the simplific $\sqrt{18}$ without working cannot be awarded	award $\frac{1}{3}$ of $\sqrt{18}, \sqrt{32}$ or $\sqrt{50}$ rst 2 marks

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
12	Ans: $\quad a=5, b=-7$ - valid strategy - processing - solution	- either $-a x-a x$ or $a^{2}+b$ - $a=5$ - $b=-7$

Notes:

(i) for $a=5$, with or without working, award the first two marks

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
13	algebraic method Ans: $\quad x=-3$ - strategy - processing - solution	- $\frac{17+x}{24+x}$ - $\frac{17+x}{24+x}=\frac{2}{3}$ - $x=-3$
	numerical method 1 Ans: $\quad x=-3$ - strategy - processing - solution	- adding the same number to numerator and denominator - further fractions - $x=-3$
	numerical method 2 Ans: $\quad x=-3$ - strategy - processing - solution	- listing at least 3 fractions equivalent $\text { to } \frac{2}{3}$ - \quad selecting $\frac{14}{21}$ - $x=-3$
Notes: (i) for $x=-3$ without working		

KU 27 marks
RE 12 marks

2008 Mathematics SG - Credit Level - Paper 2

Marking Instructions

Award marks in whole numbers only

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
1	Ans: 52900 tonnes - multiplying factor - power of 3 - solution (unrounded) - solution (rounded)	- 1.08 - 1.08^{3} - 52907.90 - 52900
Notes: (i) (ii) (iii) (iv) (v)	for 52 900, with or without working for 245000 , with or without working $\left(\times 1.8^{3}\right)$ for 32 700, with or without working $\left(\times 0.92^{3}\right)$ for any other final answers, an unrounded solutio access the $3^{\text {rd }}$ and $4^{\text {th }}$ marks candidates using simple interest may only be $((3 \times 3360)+42000=52080 \rightarrow 52100)$	award $\frac{4}{4}$ award $\frac{3}{4}$ award $\frac{3}{4}$ tion must be stated to warded the last mark

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
2 (a)	Ans: 34, 29 - median - mode	- 34 - 29
(b)	Ans: $\frac{11}{30}$ - probability	- $\frac{11}{30}$ or equivalent
Notes: (i)	for median $=29$ and mode $=34$	award $\frac{1}{2}$

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
3	Ans: £56.25 - valid strategy - processing - solution	$80 \%=45$ $100 \%=\frac{45}{0.8}$
Notes:		
(i)	for $£ 56.25$, with or without working	$\text { award } \frac{3}{3}$
(ii)	for $£ 37.50$ (120\% = £45), with working	award $\frac{2}{3}$
(iii)	for $£ 36$ (80\% of $£ 45$), with or without working	award $\frac{0}{3}$
(iv)	for $£ 54$ (120\% of $£ 45)$, with or without working	award $\frac{0}{3}$
(v)	Caution: Some candidates state $80 \%=45$ but continue as in notes (iii) or (iv). In these cases, the $1^{\text {st }}$ mark is still available	

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
4 (a)	Ans: $\quad x+y=60$ - equation	- $x+y=60$ l $\mathbf{1 K U}$
(b)	Ans: $\quad 50 x+20 y=1740$ - equation	- $50 x+20 y=1740$ [$\mathbf{1 K U}$
(c)	Ans: 18 fifty pence coins - evidence of scaling - processing - value of x	- $20 x+20 y=1200$ or equivalent - $30 x=540$ or equivalent - 18
Notes: (i) (ii)	for 18 without working for 18 and 42 verified in both equations	award $\frac{0}{3}$ award $\frac{1}{3}$

$\begin{gathered} \hline \text { Question } \\ \text { No } \end{gathered}$	Give 1 mark for each •	Illustrations of evidence for awarding each mark
5 (a)	Ans: $\sqrt{65}$ - method - solution	- $\mathrm{OP}^{2}=8^{2}+1^{2}$ - $\sqrt{65}$ or 8.06
(b)	Ans: $\sqrt{40}$ method - solution	- $\mathrm{PT}^{2}=(\sqrt{65})^{2}-5^{2}$ - $\sqrt{40}$ or 6.32
Notes: (i)	the wrong form of Pythagoras shou part (a)	enalised in part (b), if already penalised in

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
6	Ans: no, the boat is not beyond the horizon, with numerical comparison - variation statement - variation equation - evaluating k - method to enable comparison - answer and justification	- $d \propto \sqrt{h}$ - $d=k \sqrt{h}$ - $k=3.5$ - visible distance $=22.14$ or height should be 32.7 or $k_{2}=3.16\left(\right.$ from $\left.\frac{20}{\sqrt{40}}\right)$
Notes:		

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
7	Ans: $\quad 5.62 \mathrm{~m}$ - method - strategy - substitution - solution	- $\quad B C=3.3$ - use of cosine rule - $\mathrm{AC}^{2}=2.9^{2}+3.3^{2}-2 \times 2.9 \times 3.3 \cos 130^{\circ}$ - 5.62
Notes: (i) (ii)	accept solutions in radians or grad for any attempt involving Pythago	e rule, only the $1^{\text {st }}$ mark is available

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
8 (a)	Ans: $\quad 126.9 \mathrm{~m}^{2}$ - valid strategy - substitution - solution	- $\frac{1}{2} a b \sin C$ - $\frac{1}{2} \times 15 \times 18 \times \sin 70^{\circ}$ - 126.9
Notes: (i) evidence for the $1^{\text {st }}$ mark may be implicit in the substitution		
(b)	Ans: $\quad 90^{\circ}$ - solution	- 90° 1RE
Notes:		

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
9 (a)	Ans: 150° - solution	- 150° ($\mathbf{1 K U}$
(b)	Ans: $\quad 45.8$ cm - correct ratio - processing - processing - solution	- $\frac{150}{360}$ $\frac{5}{12}$ - $\frac{150}{360}=\frac{120}{2 \pi r}$ $\frac{120}{5 / 12}=288$ - $r=\frac{360}{150} \times \frac{120}{2 \pi}$ $r=\frac{288}{2 \pi}$ - 45.8 45.8
Notes: (i) a calculation using πr^{2} (which leads to $r=9.57$) cannot be awarded the $2^{\text {nd }}$ mark		

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
11 (a)	Ans: 21 - answer	- 21 1KU
(b)	Ans: proof - forming equation - rearranging	- $55=\frac{1}{2} n(n-1)$ - $n^{2}-n-110=0$
Notes: (i)	$\text { for a solution of } \begin{aligned} 55 & =\frac{1}{2} n(n-1) \\ 55 & =\frac{1}{2} n^{2}-n \\ 110 & =n^{2}-n \\ n^{2}-n-110 & =0 \end{aligned}$	award $\frac{1}{2}$
(c)	Ans: 11 - factorising - solving equation - selecting valid solution	- $\quad(n+10)(n-11)=0$ - -10 and 11 - 11
Notes: (i)	for an answer of 11 without working	$\text { award } \frac{0}{3}$

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
12 (a)	Ans: 78.7, 258.7 - equation - first solution - second solution	- $\tan x^{\circ}=5$ - 78.7 258.7 (first solution +180)
Notes: (i) for answers of 90 or 270 , only the $1^{\text {st }}$ mark is available		
(b)	Ans: 438.7 - solution	- 438.7 (1RE
Notes: (i) the solution must be consistent with a solution in part (a) (ii) for 450, following from 90, 270 in part (a)		

KU 18 marks
RE 33 marks

