2009 Mathematics

Standard Grade Credit

Finalised Marking Instructions

(C) Scottish Qualifications Authority 2009

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from the Question Paper Operations Team, Dalkeith.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's Question Paper Operations Team at Dalkeith may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Special Instructions

1 The main principle in marking scripts is to give credit for the skills which have been demonstrated. Failure to have the correct method may not preclude a pupil gaining credit for the calculations involved or for the communication of the answer.

Care should be taken to ensure that the mark for any question or part question is entered in the correct column, as indicated by the horizontal line.

Where a candidate has scored zero marks for any question attempted, " 0 " should be shown against the answer in the appropriate column.

It is of great importance that the utmost care should be exercised in adding up the marks. Where appropriate, all summations for totals and grand totals must be carefully checked.

2 The answer to one part, correct or incorrect must be accepted as a basis for subsequent dependent parts of a question. Full marks in the dependent part is possible if it is of equivalent difficulty.

3 Do not penalise insignificant errors. An insignificant error is one which is significantly below the level of attainment being assessed.
eg An error in the calculation of $16+15$ would not be penalised at Credit Level.

4 Working after a correct answer should only be taken into account if it provides firm evidence that the requirements of the question have not been met.

In certain cases an error will ease subsequent working. Full credit cannot be given for this subsequent work but partial credit may be given.

6 Accept answers arrived at by inspection or mentally, where it is possible for the answer to have been so obtained.

Do not penalise omission or misuse of units unless marks have been specifically allocated to units.

A wrong answer without working receives no credit unless specifically mentioned in the marking scheme.

The rubric on the outside of the Papers emphasises that working must be shown. In general markers will only be able to give credit to partial answers if working is shown. However there may be a few questions where partially correct answers unsupported by working can still be given some credit. Any such instances will be stated in the marking scheme.

Acceptable alternative methods of solution can only be given the marks specified, ie a more sophisticated method cannot be given more marks.

Note that for some questions a method will be specified.

In general do not penalise the same error twice in the one question.

Accept legitimate variations in numerical/algebraic questions.

Do not penalise bad form eg $\sin x^{\circ}=0.5=30^{\circ}$.

A transcription error is not normally penalised except where the question has been simplified as a result.

2009 Mathematics SG - Credit Level - Paper 1
Draft Marking Instructions

Award marks in whole numbers only

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
1	Ans: 27.11 - division - subtraction	- 28.2 - 27.11
NOTES:		

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
2	Ans: $\quad 2 \frac{5}{6}$ - common denominator - fraction	- $4 \frac{2}{6}-1 \frac{3}{6}$ - $\frac{17}{6}$
NOTES:		

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
3 (a)	Ans: 19 - substitution - evaluation	- $(-4)^{2}+3$ - 19
NOTES:	for 19 , with or without working	award 2/2
(b)	Ans: $\quad t= \pm 7$ - substitution - evaluation	- $t^{2}+3=52$ - $t= \pm 7$
NOTES: (i) (ii)	for ± 7, with or without working for 7 or -7 , with or without working	award $2 / 2$ award $1 / 2$

Question No	Give 1 mark for each •	Illustrations of evid each	ding
4 (a)	Ans: $\quad(x-2 y)(x+2 y)$ - factorising	- $(x-2 y)(x+2 y)$	1KU
NOTES:			
(b)	Ans: $\quad 2 x^{2}+7 x-4$ - expansion	- $2 x^{2}+7 x-4$	
NOTES:			
(c)	Ans: $\quad 3 x^{\frac{3}{2}}+x^{-\frac{3}{2}}$ - a correct term - a second correct term with no further 'simplification'	- $3 x^{\frac{3}{2}}$ or $x^{-\frac{3}{2}}$ - $3 x^{\frac{3}{2}}$ or $x^{-\frac{3}{2}}$	
NOTES:			
(i) (ii)	accept indices in decimal form a further 'simplification' could be $3 x^{\frac{3}{2}}+x^{-\frac{3}{2}}=3 x^{0}$		

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
5	Ans: $\quad 4 \sqrt{3}$ - method - processing - simplification	- $\mathrm{BC}^{2}=8^{2}-4^{2}$ - $\sqrt{48}$ - $4 \sqrt{3}$
NOTES:		

Question No	Give 1 mark for each -	Illustrations of evidence for awarding each mark	
7	Ans: £200 - valid strategy - processing - solution	- $130 \%=260$ - $100 \%=\frac{260}{1.3}$ - 200	
NOTES: (i) (ii) (iii) (iv) (v)	for $£ 200$, with or without working for $£ 371.43(70 \%=£ 260)$, with working for $£ 338$ (130% of $£ 260$), with or without worki for $£ 182(70 \%$ of $£ 260)$, with or without workin caution: some candidates state $130 \%=£ 260$ (iii) or (iv); in these cases, the $1^{\text {st }}$ ma	ing ng 0 and follow this as note mark is still available	award 3/3 award 2/3 award $0 / 3$ award $0 / 3$

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
8 (a)	Ans: $\quad \mathbf{6 x}+\mathbf{2 y}=\mathbf{4 2}$ - starting to form equation - equation	- $x+5 x+2 y$ - $x+5 x+2 y=42$
NOTES:		
(b)	Ans: $\quad 5 x-2 y=2$ - starting to form equation - equation	- an equation containing only the terms $5 x, 2 y$ and 2 - $5 x-2 y=2$
NOTES:		
(c)	Ans: $\quad x=4, y=9$ - method - processing - processing	- $11 x=44$ or equivalent - $x=4$ - $y=9$
NOTES:	for 4 and 9 verified in both equations	award $1 / 3$

Question No	Give $\mathbf{1}$ mark for each •	Illustrations of evidence for awarding each mark
$\mathbf{9}$	Ans: $\boldsymbol{d}=\sqrt{\frac{20 \boldsymbol{f}}{\boldsymbol{k}}}$	
	• beginning to rearrange	
	• continuing rearrangement	$k d^{2}=20 f$
	• completed rearrangement	$\bullet d^{2}=\frac{20 f}{k}$

NOTES:
(i) for $d=\sqrt{\frac{20 f}{k}}$, with or without working award $3 / 3$
(ii) for $d=\frac{\sqrt{20 f}}{k}$, with or without working award $2 / 3$
(iii) the $3^{\text {rd }}$ mark is for the square root of the candidate's expression for d^{2}

$\begin{array}{\|c\|} \hline \text { Question } \\ \text { No } \end{array}$	Give 1 mark for each •	Illustrations of evidence for awarding each mark
10 (a)	Ans: 14 seconds - strategy - solution	- $-2 t(t-14)=0$ - 14
NOTES: (i) (ii)	for an answer of 14 with no working caution: an answer of 14 may be ensure that working is va	award $2 / 2$ of incorrect working:
(b)	Ans: 98 metres - method - solution	- $(x=) 7$ - 98
NOTES:		

Question No	Give 1 mark for each -	Illustrations of evidence for awarding each mark
11	Ans: 0.3 - correct use of sine rule - rearranging - simplification	- $\frac{10}{\sin 30^{\circ}}=\frac{6}{\sin \mathrm{~A}}$ - $\sin \mathrm{A}=\frac{6 \sin 30^{\circ}}{10}$ - 0.3
NOTES: (i)	candidates who assume that $\sin \mathrm{A}=$	awarded a maximum of $\frac{1}{3} \quad\left(1^{\text {st }}\right.$ mark $)$

2009 Mathematics SG - Credit Level - Paper 2

Marking Instructions

Award marks in whole numbers only

$\begin{aligned} & \text { Question } \\ & \text { No } \end{aligned}$	Give 1 mark for each •	Illustrations o	r awarding
1	Ans: $\quad 3.1 \times 10^{24}$ - method - processing - rounding	- $\frac{1000}{3.27 \times 10^{-22}}$ - 3.058×10^{24} - 3.1×10^{24}	
NOTES:			
(i)	3.1×10^{24} with or without working		award 3/3
(ii)	3.06×10^{24} with or without working		award 2/3
(iii)	$3.058 \times 10^{24} \rightarrow 3.05 \times 10^{24}$		award 2/3
(iv)	3.05×10^{24} without working		award 1/3
(v)	$1000 \times 3.27 \times 10^{-22} \rightarrow 3.3 \times 10^{-19}$		award 1/3
(vi)	$3.1 \times 10^{n}[n=21,22,23]$ without working		award 1/3
(vii)	3.3×10^{-19} without working		award 0/3
(viii) for any other final answer, an unrounded solution must be stated to access the $3^{\text {rd }}$ mark			

$\begin{aligned} & \text { Question } \\ & \text { No } \end{aligned}$	Give 1 mark for each •	Illustrations of evidence for awarding each mark
2	Ans: 8 - valid strategy - processing - processing a division - solution	- knows to use $\pi r^{2} h$ - $\pi \times 3^{2} \times 8(=226.19)$ - $\frac{2000}{72 \pi}(=8.84)$ - 8 (rounding down)
NOTES: (i) (ii) (iii) (iv)	the second mark is available only the $3^{\text {rd }}$ mark is available for either: explicit evidence of di or: implicit evidence (unro the final mark is available for an need not be stated) if no rounding is required, the fina	ation involving π and h 00 sistent value) istent with the division (unrounded answer not be awarded

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
3	Ans: - 1.2, 5.2 - method - processing - solution - rounding	- substitution into quadratic formula - $\sqrt{40}$ - $-1.162,5.162$ - $-1.2,5.2$

NOTES:
alternative evidence for $3^{\text {rd }}$ and $4^{\text {th }}$ marks
(i) $\quad 3^{\text {rd }}$ mark (one solution and rounding) $\quad-1.162 \rightarrow-1.2$
$4^{\text {th }}$ mark (another solution and rounding) $\quad 5.162 \rightarrow \quad 5.2$
(ii) only the first mark is available for candidates who process to a negative discriminant

$\begin{aligned} & \text { Question } \\ & \text { No } \end{aligned}$	Give 1 mark for each -	Illustrations of evidence for awarding each mark
4	Ans: $\quad 112.5$ cm 2 - linear scale factor - area scale factor - solution	- $\frac{10}{4}$ or $\frac{4}{10}$ - $\left(\frac{5}{2}\right)^{2}$ or $\left(\frac{2}{5}\right)^{2}$ - 112.5
NOTES: (i) (ii)	for 112.5 with or without working for 45 with or without working	award 3/3 award $1 / 3$

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
$\mathbf{5}$	Ans: £372, £74	
	\bullet mean	
	\bullet standard deviation	$\bullet 372$
NOTES:		

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
6 (a)	Ans: $\quad y=2 x+3$ - gradient - y-intercept - gradient or intercept in equation - linear equation	- 2 - $(c=) 3$ - $y=2 x \cdots$ or $y=\cdots+3$ - $y=2 x+3$
Notes: (i) for a correct equation without working (ii) where the gradient and/or y-intercept are wrong, but explicitly stated, the $3^{\text {rd }}$ and $4^{\text {th }}$ marks are still available		
(b)	Ans: 43 - substitution - evaluation	- $2 \times 20+3$ - 43
Notes: (i)	for 43 with or without working	award $2 / 2$

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark	
8	Ans: no, plus justification - multiplying factor - power of 3 - process - communication	- 0.8 - 0.8^{3} - 0.512 - no, because $51.2 \%>50 \%$	20% 3 years 46.08 no, because $46.08>45$
NOTES: (i)	for 'simple' depreciation, only the	is available	

$\begin{aligned} & \text { Question } \\ & \text { No } \end{aligned}$	Give 1 mark for each •	Illustrations of evidence for awarding each mark
9 (a)	Ans: $\quad 20^{\circ}$ - solution	- $20^{\circ} \mathrm{lKU}$
NOTES:		
(b)	Ans: $\quad 55.6 \mathrm{~m}$ - strategy - substitution/processing - solution	- use of sine rule cosine rule median and right angled triangle - correct application of valid strategy - 55.6
NOTES: (i) (ii)	accept solutions in radians or grad for any attempt involving right an	metry in $\triangle A B C \quad$ award $0 / 3$
(c)	Ans: 312 ${ }^{\circ}$ - strategy - process	- one of $\begin{aligned} & 180^{\circ}+80^{\circ} \\ & 180^{\circ}+52^{\circ} \\ & 52^{\circ}+80^{\circ} \end{aligned}$ - 312°
NOTES:		

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
10	Ans: 10 years - substitution - process - factorisation - solution	- $\quad 83=\ldots$ - $M^{2}-4 M-60=0$ - $\quad(M-10)(M+6)=0$ - 10

NOTES:
(i) if -6 is included in the final solution, the $4^{\text {th }}$ mark cannot be awarded
(ii) for an answer of 10 without working

Question No	Give 1 mark for each -	Illustrations of evidence for awarding each mark
11(a)	Ans: $\quad 2042 \mathrm{~cm}^{2}$ - strategy - processing - solution	- $\frac{260}{360}$ - $\frac{260}{360} \times \pi \times 30^{2}$ - 2042
Notes: (i) $\frac{100}{360}$ can be awarded the $1^{\text {st }}$ mark only within the strategy $\pi r^{2}-\frac{100}{360} \pi r^{2}$		
(b)	Ans: $\quad 136.1$ cm - strategy - process - process	- circumference of base $=$ length of arc - $C=\frac{260}{360} \times \pi \times 60$ - 136.1
Notes: (i) calculating only $C=\pi \times 60$ award $0 / 3$		

Question No	Give 1 mark for each -	Illustrations of evidence for awarding each mark
12 (a)	Ans: 210 - value	- 210 1KU
NOTES:		
(b)	Ans: proof - method - proof	- $\frac{1}{2}(n+1)(n+2)$ - $\frac{1}{2}\left(n^{2}+3 n+2\right)$
Notes: (i) for verifying formula for specific values award $0 / 2$		
(c)	Ans: proof - strategy - factorising	- $\frac{1}{2} n(n+1)+\frac{1}{2}\left(n^{2}+3 n+2\right)$ - $(n+1)(n+1)$
Notes: (i)	for verifying formulae for specific values	award 0/2

KU 24 marks
RE 28 marks
[END OF PAPER 2 MARKING INSTRUCTIONS]
Final KU 45
Totals RE 45

