

2010 Mathematics

Standard Grade – Credit

Paper 1 and Paper 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2010

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from the External Print Team, Centre Services, Dalkeith.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's External Print Team, Centre Services, at Dalkeith may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Special Instructions

1 The main principle in marking scripts is to give credit for the skills which have been demonstrated. Failure to have the correct method may not preclude a pupil gaining credit for the calculations involved or for the communication of the answer.

Care should be taken to ensure that the mark for any question or part question is entered in the correct column, as indicated by the horizontal line.

Where a candidate has scored zero marks for any question attempted, "0" should be shown against the answer in the appropriate column.

It is of great importance that the utmost care should be exercised in adding up the marks. Where appropriate, all summations for totals and grand totals must be carefully checked.

- 2 The answer to one part, correct **or incorrect** must be accepted as a basis for subsequent dependent parts of a question. Full marks in the dependent part is possible if it is of equivalent difficulty.
- 3 Do not penalise insignificant errors. An insignificant error is one which is significantly below the level of attainment being assessed.
 - eg An error in the calculation of 16 + 15 would not be penalised at Credit Level.
- 4 Working after a correct answer should **only** be taken into account if it provides **firm** evidence that the requirements of the question have not been met.
- 5 In certain cases an error will ease subsequent working. **Full** credit cannot be given for this subsequent work but **partial** credit may be given.
- 6 Accept answers arrived at by inspection or mentally, where it is possible for the answer to have been so obtained.
- 7 Do not penalise omission or misuse of units unless marks have been specifically allocated to units.

8 A wrong answer without working receives no credit unless specifically mentioned in the marking scheme.

The rubric on the outside of the Papers emphasises that working must be shown. In general markers will only be able to give credit to partial answers if working is shown. However there may be a few questions where partially correct answers unsupported by working can still be given some credit. Any such instances will be stated in the marking scheme.

9 Acceptable alternative methods of solution can only be given the marks specified, ie a more sophisticated method cannot be given more marks.

Note that for some questions a method will be specified.

- 10 In general do not penalise the same error twice in the one question.
- 11 Accept legitimate variations in numerical/algebraic questions.
- 12 Do not penalise bad form eg sinx⁰ = $0.5 = 30^{\circ}$.
- 13 A transcription error is not normally penalised except where the question has been simplified as a result.
- 14 When multiple solutions are presented by the candidate and it is not clear which is intended to be the final one, mark all attempts and award the lowest mark.

2010 Mathematics SG – Credit Level – Paper 1

Draft Marking Instructions

Award marks in whole numbers only

Question No	Give 1 mark for each ●	Illustrations of evidence for awarding each mark
1	Ans: £2·79	
	• knowing correct order of operations	• 4·60
	• carrying out both calculations	• 2·79 2KU
NOTES:		
(i)	for 2.79, with or without working	award 2/2
(ii)	for 3.876 , 3.88 or 3.87 , with or without workin	award 1/2

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
2	 Ans: 4/11 valid strategy correct calculation 	• $\frac{2}{5} \times \frac{10}{11}$ • $\frac{4}{11}$ or equivalent 2KU
NOTES:		
(i)	alternative valid strategies for first mark:	
	• $\frac{4}{10} \div \frac{11}{10}$	
	• $\frac{0\cdot 4}{1\cdot 1}$	
(ii)	for $\frac{2}{5} \times \frac{11}{10} = \frac{22}{50}$	
	or $\frac{5}{2} \times \frac{11}{10} = \frac{55}{20}$	
	or $\frac{5}{2} \times \frac{10}{11} = \frac{50}{22}$	award 1/2
(iii)	for $\frac{4}{11} = 2\frac{3}{4}$ or $2\frac{3}{11}$	award 1/2

Question No	Give 1 mark for each ●	Illustrations of evidence for awarding each mark
3	Ans: $s = \frac{2t-4}{7}$	
	• beginning to rearrange	• $7s + 4 = 2t$
	• continuing to rearrange	• $7s = 2t - 4$
	• completed rearrangement	• $s = \frac{2t-4}{7}$ 3KU
NOTES:		

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
4 (a)	Ans: proof	
	• forming equation	$\bullet x^2 - 4x = 2x + 7$
	• rearranging	$\bullet x^2 - 6x - 7 = 0$
		2RE
NOTES:		
(b)	Ans: $x = -1, x = 7$	
	• factorising	• $(x+1)(x-7)$
	• solution	• -1,7
		2RE
NOTES:		

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
5 (a)	Ans: $\frac{5}{9}$	5
	• probability	• $\frac{5}{9}$ or equivalent 1KU
NOTES:		
(b)	Ans: 15	
	• solution	• 15 1RE
NOTES:		

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
6	Ans: 750 grams	
	• valid strategy	• 120% = 900
	• processing	• 20% = 150 or similar
	• solution	• 750
		3 KU
NOTES:		
(i)	for 750 with or without working	award 3/3
(ii)	for 720 (80% of 900) with or without working	award 0/3
(iii)	for 1080 (120% of 900) with or without working	award 0/3
(iv)	caution: some candidates state $120\% = 90$ (ii) or (iii); in these cases, the 1^{st}	0 but follow this as note mark is still available

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
7 (-)	A	
/ (a)	Ans: $2m + c = 7$	
	• equation	• $2m + c = 7$ IKU
(b)	Ans: $4m + c = 17$	
	• equation	• $4m + c = 17$
		1KU
NOTES:		
(i) n	narks can only be awarded for equations in term	ns of m and c
(c)	Ans: $m = 5, c = -3$	
	• method	• $2m = 10$ or similar
	• value of <i>m</i>	• 5
	• value of <i>c</i>	• -3 3 RE
NOTES:		
(i) accept alternative methods eg $m = \frac{17 - 7}{4 - 2}$		
	or graphical	solution
(d)	Ans: 5	
	• gradient	• 5 1RE
NOTES:		
(i) the final mark is awarded for either the correct gradient (5) or the value of m from part (c)		

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
8 (a)	Ans: 6	
	• simplifying	• 6 1KU
NOTES:		
(b)	Ans: $4\sqrt{2}$	
	• simplifying	• $4\sqrt{2}$
		1KU
NOTES:	1	1
(c)	Ans: $\frac{3\sqrt{2}}{4}$	$6 \sqrt{2}$
	• rationalise denominator	• $\frac{1}{4\sqrt{2}} \times \frac{1}{\sqrt{2}}$
	• simplification	• $\frac{3\sqrt{2}}{4}$
		2 KU
NOTES:		

Question No	Give 1 mark for each ●	Illustrations of evidence for awarding each mark
9 (a)	Ans: B(-6, 0)	
	• starting to solve	$\bullet \frac{1}{3}x + 2 = 0$
	• coordinates of B	• (-6,0) 2KU
NOTES:		
(i) fo	for $(-6, 0)$ with or without working	award 2/2
(ii) f	for $(0, -6)$ with or without working	award 1/2
(iii) a	nswer must be in co-ordinate form	
(b)	Ans: $x < -6$	
	• solution	• <i>x</i> < -6 1RE
NOTES:	1	I

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
10 (a)	Ans: $\frac{5^2 \times 6^2}{4}$	
	• solution	• $\frac{5^2 \times 6^2}{4}$
NOTES:		
(b)	Ans: $\frac{n^2(n+1)^2}{4}$	
	• starting expression	• $n \text{ and } n+1$
	• solution	$\bullet \frac{n^2(n+1)^2}{4}$
		2RE
NOTES:		
(c)	Ans: 2025	
	• starting expression	• $\frac{9^2(9+1)^2}{4}$
	• solution	• 2025 2RE
NOTES:		

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
11	Ans: $x = \frac{6}{5}$	
	• strategy	• $\frac{1}{2} \times 1 \times \frac{x}{2}$ or $\frac{1}{2} \times 3 \times (x-1)$
	• forming a valid equation	• $\frac{1}{2} \times 1 \times \frac{x}{2} = \frac{1}{2} \times 3 \times (x-1)$
	• starting to solve	• $x = 6(x-1)$
	• solution	• $x = \frac{6}{5}$
		4RE
NOTES:		
(i)	areas need not be explicitly stated	
(ii)	for $1 \times \frac{x}{2} = 3(x-1)$ award the first two marks	
(iii)	for $1 \times \frac{x}{2} = 3(x-1)$ arising from Area of Triang awarded	$le = b \times h$, the first two marks cannot be

KU 19 marks RE 19 marks

[END OF PAPER 1 MARKING INSTRUCTIONS]

2010 Mathematics SG – Credit Level – Paper 2

Marking Instructions

Award marks in whole numbers only

Question No	Give 1 mark for each ●	Illustrations of evidence for awarding each mark
1	Ans: 35 400 tonnes	
	• multiplying factor	• 0.75
	• power of 3	• 0.75^3
	• solution	• 35 437.5
	• rounding	• 35 400
		4KU
NOTES:		
(i)	for 35 400, with or without working	award 4/4
(ii)	for 1310, with or without working $(\times 0 \cdot 25^3)$	award 3/4
(iii)	for 164 000, with or without working $(\times 1.25^{\circ})$	award 3/4
(iv)	for 21 000, with or without working	award 0/4
	For any other final answers	
(v)	the 3 rd mark is for an unrounded answer	
(vi)	the last mark is for correctly rounding the num	ber given for the 3 rd mark
(vii)	candidates who do not give an unrounded num	ber cannot be awarded the last two marks

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
2	Ans: $x^3 - 2x^2 + x$	
	• correct expansion of $x(x-1)$ or $(x-1)^2$	• $x^2 - x$ or $x^2 - x - x + 1$
	• further expansion and simplification	• $x^3 - 2x^2 + x$ 2KU
NOTES:		

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
3 (a)	Ans: 101, 1.69	
	calculating mean	• 101
	• starting to calculate standard deviation	• as far as 20 or 81 628
	• standard deviation	• 1·69 3KU

NOTES:

								$(\Sigma r)^2$
	x	$x - \overline{x}$	$(x-\overline{x})^2$		x^2	$\sum (x)$	$(\overline{x}-\overline{x})^2$	$\sum_{n=1}^{\infty} \frac{\sum x^2 - \frac{(\sum x)}{n}}{n}$
	101	1	1		10404	$s = \sqrt{\frac{1}{n}}$	i-1	$s = \sqrt{n-1}$
	102	1	1		10404	$\overline{20}$		808 ²
ļ	101	0	0		10201	$=\sqrt{\frac{20}{7}}$		$81628 - \frac{300}{8}$
	98	-3	9		9604	V /		$=\sqrt{\frac{8}{7}}$
ļ	99	-2	4		9801	$=\sqrt{2\cdot 8}$	57	/2.057
	101	0	0		10201	=1.69		$=\sqrt{2}\cdot 857$
ļ	103	2	4		10609			=1.69
	102	1	1		10404			
			20		81628			
	(b)	Ans:	two valid	statemen	ts			
		• con	nparing mea	ans		• the se numb	cond sau er of pin	nple has on average, a greater is per box
		• con	nparing star	idard devi	ations	• the se in the	cond sau number	nple has a greater variability of pins per box
								2RE

NOTES:

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
4	Ans: -2.6, 0.9	
	• method	• substitution into quadratic formula
	• processing	• $\sqrt{109}$
	• solution	• -2·573, 0·907
	• rounding	• -2·6, 0·9 4KU
NOTES:		
alter	native evidence for 3 rd and 4 th marks	
(i)	3 rd mark (one solution and rounding) 4 th mark (another solution and rounding)	$\begin{array}{ccc} -2.573 \rightarrow & -2.6 \\ 0.907 \rightarrow & 0.9 \end{array}$
(ii)	only the first mark is available for candidates w	ho process to a negative discriminant

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
5 (a)	Ans: 0.866 m	
	• method	• $1^2 = x^2 + 0 \cdot 5^2$
	• solution	• $x = 0 \cdot 866 \cdots$
		2RE
NOTES:		
(b)	Ans: $1 \cdot 57 \text{ m}^3$	
	• process – area of cross section	• $0 \cdot 5 \times 0 \cdot 5 \times 0 \cdot 866 + 0 \cdot 5 \times (2 - 0 \cdot 866)$
	• process – volume of prism	• 0.7835×2
	• all calculations correct	• 1.567
	OR	
	• process – volume of cuboid	• $0 \cdot 5 \times 1 \cdot 134 \times 2 = 1 \cdot 134$
	 process – volume of prism added to volume of cuboid 	• $0 \cdot 5 \times 0 \cdot 5 \times 0 \cdot 866 \times 2 + 1 \cdot 134$
	• all calculations correct	• 1·567 3RE
NOTES:	1	

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
6	Ans: 88.0 cm	
	• fraction of circumference	• $\frac{140}{360}$
	• use of formula	• $\frac{140}{360} \times \pi \times 72$
	• all calculations correct	• 87·96 3KU
NOTES:		<u> </u>
(i)	for 87.96 with or without working	award 3/3
(ii)	for 1583.36 from $\frac{140}{360} \times \pi \times 36^2$	award 2/3
(iii)	the 3 rd mark is available only for a calculation	n involving π

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
7	Ans: 24 cm	
	• volume scale factor	• 8 or equivalent
	• linear scale factor	• ³ √8
	• calculating height	• 24 3 KU
NOTES:		
(i) f	or 96 with or without working	award 2/3

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
8	Ans: 9	
	• stating $\angle DEF$	• 64°
	• valid strategy	• $\frac{e}{\sin 64^\circ} = \frac{26.2}{\sin 34^\circ}$ or
		$e^{2} = 26 \cdot 2^{2} + 46 \cdot 4^{2} - 2 \times 26 \cdot 2 \times 46 \cdot 4 \cos 64^{\circ}$
	• finding third side	• 42.1
	• solution	• 9 4RE
NOTES:		·

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
9	Ans: 5:6	
	• new sugar ratio	• 4 parts
	• new fruit ratio	• 4·8 parts
	• new ratio	• 4:4.8
	• simplified ratio	• 5:6 4RE
NOTES:		

Question No	Give 1 mark for each ●	Illustrations of evidence for awarding each mark
10	Ans: 126 · 9°	
	• valid strategy	• $\frac{1}{2} \times 6 \times 5 \times \sin x^{\circ} = 12$
	• rearranging	• $\sin x^\circ = \frac{12}{15}$
	• starting to solve	• $x = \sin^{-1}\left(\frac{12}{15}\right) = 53 \cdot 1^{\circ}$
	• obtuse angle	• $126 \cdot 9^{\circ}$ 4RE
NOTES:		

Question No	Give 1 mark for each ●	Illustrations of evidence fo each mark	or awarding
11 (a)	Ans: $h = \frac{kV}{b^2}$ • variation statement	• $h \propto \frac{V}{h^2}$	
	• variation equation	• $h = \frac{kV}{b^2}$	2 KU
NOTES:			
(i) i	for $h = \frac{kV}{b^2}$ without working		award 2/2
(ii)	if $h = \frac{kV}{b^2}$ is not stated in (a) but implicit in (b)		award 2/2
(iii) t	for $V = \frac{1}{3}b^2h$		award 2/2
(iv) 1	for any incorrect variation statement involving equation	<i>V</i> and <i>b</i> leading to a consistent	award 1/2
(b)	Ans: 18 cm		
	• substitution	• $12 = \frac{k \times 256}{8^2}$	
	• formula	• $h = \frac{3V}{b^2}$	
	• solution	• 18	3KU
NOTES:	·	·	
(i) 1	for use of $V = \frac{1}{3}b^2h$ followed through to the co	prrect answer	award 3/3

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
12	Ans: $x = 5$	
	• valid strategy	• $(x+8)^2 = x^2 + (x+7)^2$
	• starting to solve	• $x^2 + 16x + 64 = 2x^2 + 14x + 49$
	• quadratic equation	$\bullet x^2 - 2x - 15 = 0$
	• factorising	• $(x-5)(x+3)$
	• solution	• $x = 5$
		5RE
NOTES:		
(i)]	For the third mark to be awarded the form must	the $ax^2 + bc + c = 0$

Question No	Give 1 mark for each ●	Illustrations of evidence for awarding each mark	
13 (a)	Ans: 3.875 m		
	• substitution	• $3+1\cdot75\sin(30\times5)^\circ$	
	• solution	• 3.875	2KU
NOTES:			
(i) Accept $3 + 1.75 \sin 30 \times 5$			
(b)	Ans: 3.5 m		
	• beginning to solve	• 1.25 or 4.75	
	• solution	• 3.5	2RE
NOTES:			
(i) For two wrong substitutions calculated correctly the second mark is available			
(ii)	For 3.5 without working		award 1/2

KU 26 marks RE 26 marks

[END OF PAPER 2 MARKING INSTRUCTIONS]

FinalKU 45TotalsRE 45