2010 Mathematics

Standard Grade - Credit

Paper 1 and Paper 2

Finalised Marking Instructions

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from the External Print Team, Centre Services, Dalkeith.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's External Print Team, Centre Services, at Dalkeith may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Special Instructions

1 The main principle in marking scripts is to give credit for the skills which have been demonstrated. Failure to have the correct method may not preclude a pupil gaining credit for the calculations involved or for the communication of the answer.

Care should be taken to ensure that the mark for any question or part question is entered in the correct column, as indicated by the horizontal line.

Where a candidate has scored zero marks for any question attempted, " 0 " should be shown against the answer in the appropriate column.

It is of great importance that the utmost care should be exercised in adding up the marks. Where appropriate, all summations for totals and grand totals must be carefully checked.

2 The answer to one part, correct or incorrect must be accepted as a basis for subsequent dependent parts of a question. Full marks in the dependent part is possible if it is of equivalent difficulty.

3 Do not penalise insignificant errors. An insignificant error is one which is significantly below the level of attainment being assessed.
eg An error in the calculation of $16+15$ would not be penalised at Credit Level.

4 Working after a correct answer should only be taken into account if it provides firm evidence that the requirements of the question have not been met.

In certain cases an error will ease subsequent working. Full credit cannot be given for this subsequent work but partial credit may be given.

6 Accept answers arrived at by inspection or mentally, where it is possible for the answer to have been so obtained.

Do not penalise omission or misuse of units unless marks have been specifically allocated to units.

A wrong answer without working receives no credit unless specifically mentioned in the marking scheme.

The rubric on the outside of the Papers emphasises that working must be shown. In general markers will only be able to give credit to partial answers if working is shown. However there may be a few questions where partially correct answers unsupported by working can still be given some credit. Any such instances will be stated in the marking scheme.

Acceptable alternative methods of solution can only be given the marks specified, ie a more sophisticated method cannot be given more marks.

Note that for some questions a method will be specified.

In general do not penalise the same error twice in the one question.

Accept legitimate variations in numerical/algebraic questions.

Do not penalise bad form eg $\sin x^{0}=0.5=30^{0}$.

A transcription error is not normally penalised except where the question has been simplified as a result.

When multiple solutions are presented by the candidate and it is not clear which is intended to be the final one, mark all attempts and award the lowest mark.

2010 Mathematics SG - Credit Level - Paper 1

Draft Marking Instructions

Award marks in whole numbers only

$\begin{gathered} \text { Question } \\ \text { No } \end{gathered}$	Give 1 mark for each •	Illustrations of evidence for awarding each mark
1	Ans: $\mathbf{£ 2 . 7 9}$ - knowing correct order of operations - carrying out both calculations	- $4 \cdot 60$ - 2.79 $2 \mathrm{KU}$
NOTES: (i) (ii)	for $2 \cdot 79$, with or without working for $3 \cdot 876,3 \cdot 88$ or $3 \cdot 87$, with or without working	award 2/2 award 1/2

Question No	Give 1 mark for each -	Illustrations of evidence for awarding each mark
2	Ans: $\frac{4}{11}$ - valid strategy - correct calculation	- $\frac{2}{5} \times \frac{10}{11}$ - $\frac{4}{11}$ or equivalent

(i) alternative valid strategies for first mark:

- $\frac{4}{10} \div \frac{11}{10}$
- $\frac{0.4}{1 \cdot 1}$
(ii) for $\frac{2}{5} \times \frac{11}{10}=\frac{22}{50}$
or $\frac{5}{2} \times \frac{11}{10}=\frac{55}{20}$
or $\frac{5}{2} \times \frac{10}{11}=\frac{50}{22}$
award $1 / 2$
(iii) for $\frac{4}{11}=2 \frac{3}{4}$ or $2 \frac{3}{11}$
award $1 / 2$

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
$\mathbf{3}$	Ans: $\quad s=\frac{\mathbf{2 t}-\mathbf{4}}{\mathbf{7}}$	
	• beginning to rearrange	• $7 s+4=2 t$
	• continuing to rearrange	• $7 s=2 t-4$
	• completed rearrangement	• $s=\frac{2 t-4}{7}$
NOTES:		

Question No	Give 1 mark for each -	Illustrations of evidence for awarding each mark
4 (a)	Ans: proof - forming equation - rearranging	- $x^{2}-4 x=2 x+7$ - $x^{2}-6 x-7=0$
NOTES:		
(b)	Ans: $\quad x=-1, x=7$ - factorising - solution	- $(x+1)(x-7)$ - $-1,7$
NOTES:		

$\begin{aligned} & \text { Question } \\ & \text { No } \end{aligned}$	Give 1 mark for each -	Illustrations of evidence for awarding each mark	
5 (a)	Ans: $\quad \frac{5}{9}$ - probability	- $\frac{5}{9}$ or equivalent$\mathbf{1 K U}$	
NOTES:			
(b)	Ans: 15 - solution	- 15	
NOTES:			

Question No	Give 1 mark for each -	Illustrations of evidence for awarding each mark
7 (a)	Ans: $\quad 2 m+c=7$ - equation	- $2 m+c=7$ ($\mathbf{1 K U}$
(b)	Ans: $\quad 4 m+c=17$ - equation	- $4 m+c=17$ ($\mathbf{1 K U}$
NOTES: (i) marks can only be awarded for equations in terms of m and c		
(c)	Ans: $\quad m=5, c=-3$ - method - value of m - value of c	- $2 m=10$ or similar - 5 - -3
NOTES: (i)	ceept alternative methods eg or	7 solution
(d)	Ans: 5 - gradient	- 5 1RE
NOTES:	e final mark is awarded for either the	radient (5) or the value of m from part (c)

Question No	Give 1 mark for each -	Illustrations of evidence for awarding each mark	
8 (a)	Ans: 6 - simplifying	- 6 lKU	
NOTES:			
(b)	Ans: $\quad 4 \sqrt{2}$ - simplifying	- $4 \sqrt{2}$	
NOTES:			
(c)	Ans: $\quad \frac{3 \sqrt{2}}{4}$ - rationalise denominator - simplification	- $\frac{6}{4 \sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}$ - $\frac{3 \sqrt{2}}{4}$	
NOTES:			

Question No	Give 1 mark for each -	Illustrations of evidence for awarding each mark
9 (a)	Ans: $\quad \mathbf{B}(-6,0)$ - starting to solve - coordinates of B	- $\frac{1}{3} x+2=0$ - $(-6,0)$
NOTES:	$(-6,0)$ with or without working $(0,-6)$ with or without working swer must be in co-ordinate form	award 2/2 award 1/2
(b)	Ans: $\quad x<-6$ - solution	- $x<-6$
NOTES:		

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
11	Ans: $\quad x=\frac{6}{5}$ - strategy - forming a valid equation - starting to solve - solution	- $\frac{1}{2} \times 1 \times \frac{x}{2}$ or $\frac{1}{2} \times 3 \times(x-1)$ - $\frac{1}{2} \times 1 \times \frac{x}{2}=\frac{1}{2} \times 3 \times(x-1)$ - $x=6(x-1)$ - $x=\frac{6}{5}$

NOTES:
(i) areas need not be explicitly stated
(ii) for $1 \times \frac{x}{2}=3(x-1)$ award the first two marks
(iii) for $1 \times \frac{x}{2}=3(x-1)$ arising from Area of Triangle $=b \times h$, the first two marks cannot be awarded

2010 Mathematics SG - Credit Level - Paper 2

Marking Instructions

Award marks in whole numbers only

Question No	Give 1 mark for each -	Illustrations of evidence for awarding each mark
1	Ans: $\mathbf{3 5} \mathbf{4 0 0}$ tonnes - multiplying factor - power of 3 - solution - rounding	- 0.75 - 0.75^{3} - 35437.5 - 35400
NOTES:		
(i)	for 35400 , with or without working	award 4/4
(ii)	for 1310 , with or without working $\left(\times 0 \cdot 25^{3}\right)$	award 3/4
(iii)	for 164000 , with or without working $\left(\times 1 \cdot 25^{3}\right)$	award 3/4
(iv)	for 21000 , with or without working	award 0/4
	For any other final answers	
(v) the $3^{\text {rd }}$ mark is for an unrounded answer		
(vi) the last mark is for correctly rounding the number given for the $3^{\text {rd }}$ mark		
(vii) candidates who do not give an unrounded number cannot be awarded the last two marks		

$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Question } \\ \text { No } \end{array} \\ \hline \end{array}$	Give 1 mark for each •	Illustrations of evidence for awarding each mark
2	Ans: $\quad x^{3}-2 x^{2}+x$ - correct expansion of $x(x-1)$ or $(x-1)^{2}$ - further expansion and simplification	- $x^{2}-x$ or $x^{2}-x-x+1$ - $x^{3}-2 x^{2}+x$
NOTES:		

Question No	Give 1 mark for each •			Illustrations of evidence for awarding each mark
3 (a)	Ans: - ca - sta - sta	101, $1 \cdot 69$ ulating m ing to calc dard devia	ard deviation	- 101 - as far as 20 or 81628 - 1.69 3KU
NOTES:				
x	$x-\bar{x}$	$(x-\bar{x})^{2}$	$\overline{x^{2}}$	$s=\left.\sqrt{\sum(x-\bar{x})^{2}}\right\|_{s=\sqrt{\frac{\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}}{\underline{L}}} \text {. }} ^{s,}$
101	1	1	10404	$s=\sqrt{\frac{1}{n-1}} \quad s=\sqrt{n-1}$
102	1	1	10404	$\sqrt{20} \quad$$81628-808^{2}$
101	0	0	10201	$81628-\frac{808^{2}}{0}$
98	-3	9	9604	$\sqrt{7} \quad=\sqrt{-8}$
99	-2	4	9801	$=\sqrt{2.857} \quad{ }^{7}$
101	0	0	10201	$=1.69 \quad=\sqrt{2.857}$
103	2	4	10609	$=1.69$
102	1	1	10404	
		20	81628	
(b)	Ans: two valid statements - comparing means - comparing standard deviations			- the second sample has on average, a greater number of pins per box - the second sample has a greater variability in the number of pins per box
				2RE
NOTES:				

Question No	Give 1 mark for each -	Illustrations of evidence for awarding each mark
4	Ans: $\quad \mathbf{- 2 . 6}, \mathbf{0 . 9}$ - method - processing - solution - rounding	- substitution into quadratic formula - $\sqrt{109}$ - $\quad-2 \cdot 573,0.907$ - $-2 \cdot 6,0 \cdot 9$
NOTES: alter (i) (ii)	tive evidence for $3^{\text {rd }}$ and $4^{\text {th }}$ marks ${ }^{\text {d }}$ mark (one solution and rounding) mark (another solution and rounding) nly the first mark is available for candid	$\begin{aligned} -2.573 & \rightarrow & -2.6 \\ 0.907 & \rightarrow & 0.9 \end{aligned}$ process to a negative discriminant

Question No	Give 1 mark for each -	Illustrations of evidence for awarding each mark
5 (a)	Ans: $\mathbf{0 . 8 6 6} \mathbf{~ m}$ - method - solution	- $1^{2}=x^{2}+0 \cdot 5^{2}$ - $x=0 \cdot 866 \cdots$
NOTES:		
(b)	Ans: $\quad \mathbf{1 . 5 7} \mathrm{m}^{\mathbf{3}}$ - process - area of cross section - process - volume of prism - all calculations correct OR - process - volume of cuboid - process - volume of prism added to volume of cuboid - all calculations correct	- $0.5 \times 0.5 \times 0.866+0.5 \times(2-0 \cdot 866)$ - 0.7835×2 - 1.567 - $0.5 \times 1 \cdot 134 \times 2=1 \cdot 134$ - $0.5 \times 0 \cdot 5 \times 0 \cdot 866 \times 2+1 \cdot 134$ - 1.567
NOTES:		

Question No	Give 1 mark for each -	Illustrations of evidence for awarding each mark	
6	Ans: $\quad \mathbf{8 8 . 0} \mathbf{~ c m}$ - fraction of circumference - use of formula - all calculations correct	- $\frac{140}{360}$ - $\frac{140}{360} \times \pi \times 72$ - 87.96	
NOTES:			
(i) for 87.96 with or without working			award 3/3
(ii) for 1583.36 from $\frac{140}{360} \times \pi \times 36^{2}$			award $2 / 3$
(iii) the $3^{\text {rd }}$ mark is available only for a calculation involving π			

Question No	Give 1 mark for each -	Illustrations of evidence for awarding each mark
7	Ans: 24 cm - volume scale factor - linear scale factor - calculating height	- 8 or equivalent - $\sqrt[3]{8}$ - 24
NOTES: (i)	r 96 with or without working	award 2/3

Question No	Give 1 mark for each -	Illustrations of evidence for awarding each mark
8	Ans: 9 - stating $\angle D E F$ - valid strategy - finding third side - solution	- 64° - $\frac{e}{\sin 64^{\circ}}=\frac{26.2}{\sin 34^{\circ}}$ or $e^{2}=26 \cdot 2^{2}+46 \cdot 4^{2}-2 \times 26 \cdot 2 \times 46 \cdot 4 \cos 64^{\circ}$ - $42 \cdot 1$ - 9
NOTES:		

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
9	Ans: 5:6 - new sugar ratio - new fruit ratio - new ratio - simplified ratio	- 4 parts - $4 \cdot 8$ parts - $4: 4 \cdot 8$ - 5:6
NOTES:		

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
10	Ans: $\mathbf{1 2 6 . 9}{ }^{\circ}$ - valid strategy - rearranging - starting to solve - obtuse angle	- $\frac{1}{2} \times 6 \times 5 \times \sin x^{\circ}=12$ - $\sin x^{\circ}=\frac{12}{15}$ - $x=\sin ^{-1}\left(\frac{12}{15}\right)=53 \cdot 1^{\circ}$ - 126.9°
NOTES:		

$\begin{array}{\|c\|} \hline \text { Question } \\ \text { No } \end{array}$	Give 1 mark for each -	Illustrations of evidence f each mark	r awarding
11 (a)	Ans: $\quad h=\frac{k V}{b^{2}}$ - variation statement - variation equation	- $h \propto \frac{V}{b^{2}}$ - $h=\frac{k V}{b^{2}}$	$2 \mathrm{KU}$
NOTES: (i) (ii) (iii) (iv)	for $h=\frac{k V}{b^{2}}$ without working if $h=\frac{k V}{b^{2}}$ is not stated in (a) but implicit in (b) for $V=\frac{1}{3} b^{2} h$ for any incorrect variation statement involving equation	V and b leading to a consistent	award $2 / 2$ award $2 / 2$ award 2/2 award 1/2
(b)	Ans: 18 cm - substitution - formula - solution	- $12=\frac{k \times 256}{8^{2}}$ - $h=\frac{3 V}{b^{2}}$ - 18	3KU
NOTES: (i)	for use of $V=\frac{1}{3} b^{2} h$ followed through to the	rrect answer	award 3/3

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
12	Ans: $x=5$ - valid strategy - starting to solve - quadratic equation - factorising - solution	- $(x+8)^{2}=x^{2}+(x+7)^{2}$ - $x^{2}+16 x+64=2 x^{2}+14 x+49$ - $x^{2}-2 x-15=0$ - $(x-5)(x+3)$ - $x=5$
NOTES:		
(i) For the third mark to be awarded the form must be $a x^{2}+b c+c=0$		

KU 26 marks
RE 26 marks
[END OF PAPER 2 MARKING INSTRUCTIONS]
Final KU 45
Totals RE 45

