2012 Mathematics

Standard Grade Credit

Finalised Marking Instructions

© Scottish Qualifications Authority 2012

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Delivery: Exam Operations.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Delivery: Exam Operations may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Special Instructions

1 The main principle in marking scripts is to give credit for the skills which have been demonstrated. Failure to have the correct method may not preclude a pupil gaining credit for the calculations involved or for the communication of the answer.

Care should be taken to ensure that the mark for any question or part question is entered in the correct column, as indicated by the horizontal line.

Where a candidate has scored zero marks for any question attempted, " 0 " should be shown against the answer in the appropriate column.

It is of great importance that the utmost care should be exercised in adding up the marks. Where appropriate, all summations for totals and grand totals must be carefully checked.

The answer to one part, correct or incorrect must be accepted as a basis for subsequent dependent parts of a question. Full marks in the dependent part is possible if it is of equivalent difficulty.

Do not penalise insignificant errors. An insignificant error is one which is significantly below the level of attainment being assessed.
eg An error in the calculation of $16+15$ would not be penalised at Credit Level.

4 Working after a correct answer should only be taken into account if it provides firm evidence that the requirements of the question have not been met.

In certain cases an error will ease subsequent working. Full credit cannot be given for this subsequent work but partial credit may be given.

Accept answers arrived at by inspection or mentally, where it is possible for the answer to have been so obtained.

Do not penalise omission or misuse of units unless marks have been specifically allocated to units.

A wrong answer without working receives no credit unless specifically mentioned in the marking scheme.

The rubric on the outside of the Papers emphasises that working must be shown. In general markers will only be able to give credit to partial answers if working is shown. However there may be a few questions where partially correct answers unsupported by working can still be given some credit. Any such instances will be stated in the marking scheme.

Acceptable alternative methods of solution can only be given the marks specified, ie a more sophisticated method cannot be given more marks.

Note that for some questions a method will be specified.

In general do not penalise the same error twice in the one question.

Accept legitimate variations in numerical/algebraic questions.

Do not penalise bad form eg $\sin x^{\circ}=0.5=30^{\circ}$.

A transcription error, where a number has been erroneously transcribed from the examination question, is not normally penalised except where the question has been simplified as a result.

Where multiple solutions are presented by the candidate and it is not clear which is intended to be the final one, mark all attempts and award the lowest mark.

2012 Mathematics SG - Credit Level - Paper 1

Marking Instructions

Award marks in whole numbers only

$\begin{aligned} & \text { Question } \\ & \text { No } \end{aligned}$	Give 1 mark for each •	Illustrations of evidence for awarding each mark
2	Ans: $6 x^{3}-x^{2}+13 x-10$ - beginning to expand - completing expansion - simplification	- any $\mathbf{3}$ correct terms - a further $\mathbf{3}$ correct terms - $6 x^{3}-x^{2}+13 x-10$
NOTES:		

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
3	Ans: $\quad m=(k L)^{2}$ - beginning to rearrange - completed rearrangement	- $\sqrt{m}=k L$ - $\quad \mathrm{m}=(\mathrm{kL})^{2}$ or $\mathrm{k}^{2} \mathrm{~L}^{2}$
NOTES:		

$\begin{gathered} \text { Question } \\ \text { No } \end{gathered}$	Give 1 mark for each •	Illustrations of evidence for awarding each mark
4	Ans: $\quad 2 \sqrt{11}$ - recognition of right angle at R - correct substitution into valid strategy - calculation of QR - simplification of surd	- $\widehat{\mathrm{R}}=90^{\circ}$ or $\mathrm{PQ}^{2}=\mathrm{PR}^{2}+\mathrm{QR}^{2}$ or indication on diagram - $\mathrm{QR}^{2}=12^{2}-10^{2}$ - $\mathrm{QR}=\sqrt{44}$ - $2 \sqrt{11}$
NOTES:		

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
5	Ans: yes, plus justification - strategy - continue strategy - communication	- $\frac{90}{150}$ or 0.6 - $\frac{96}{150}$ or 0.64 - yes, because $\frac{96}{150}>\frac{90}{150}$ or $0.64>0.6$
NOTES:		
(i) $\quad \mathrm{Th}$ (ii) $\frac{18}{30}$	e communication must include refer guage. $=\frac{3}{5}=\frac{15}{25}$ gains the first 2 marks.	values or the use of comparative

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
6 (a)	Ans: $x=2$ - strategy - correct equation	
NOTES:		
(b)	Ans: 9 - substitution - solution	- $y=5+4(2)-2^{2}$ - 9
NOTES:		

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
7	Ans: proof - starting proof - processing - starting to simplify - final simplification	- $x=\frac{2 \pm \sqrt{(-2)^{2}-4(2)(-1)}}{2 \times 2}$ - $\sqrt{12}$ - $2 \sqrt{3}$ - $\frac{1 \pm \sqrt{3}}{2}$
NOTES:		
(i) Final mark can be awarded only if $2 \sqrt{3}$ is explicitly stated.		

$\begin{aligned} & \text { Question } \\ & \text { No } \end{aligned}$	Give 1 mark for each •	Illustrations of evidence for awarding each mark
8	Ans: (4,5) Method 1 - re-arranging terms - evidence of scaling - one value - coordinates	- $2 y=-x+14$ - $4 y=-2 x+28$ - $y=5$ - $(4,5)$
	Ans: (4,5) Method 2 - substitution - simplifying - one value - coordinates	- $x+2(2 x-3)=14$ - $5 x-6=14$ - $x=4$ - $(4,5)$
NOTES:		
(i)	for (4,5) without working but checked in both equations	
(ii)	for (4,5) without either working or checking	
(iii)	The final mark is available only for an answer in coordinate form	

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
11 (a)	Ans: 110 - solution	- 110
(b)	Ans: $\quad \frac{n}{2} \times\left(\frac{n}{2}+1\right)$ - expression	- $\frac{n}{2} \times\left(\frac{n}{2}+1\right)$
NOTES:		
(c)	Ans: 2530 - starting strategy - completing strategy	- 2550 - 2530
NOTES:		

KU 17 marks
RE 20 marks
[END OF PAPER 1 MARKING INSTRUCTIONS]

2012 Mathematics SG - Credit Level - Paper 2

Marking Instructions

Award marks in whole numbers only

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
2 (a)	Ans: 14 - SIQR	- 14
(b)	Ans: two valid statements - one valid comparison - a second valid comparison	- on average the number of sit-ups per athlete has risen - the number of sit-ups is less varied
NOTES: (i) (ii) (ii)	other valid statements could comp - least number of sit-ups - greatest number of sit-ups since numerical comparisons are as a comparison between perform - everyone could do more sit-u - the median is higher - the range is smaller	, do not penalise numerical inaccuracies s is required do not accept ning

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
3	Ans: 5 litres Method 1 - strategy (area of cross section) - strategy (volume of prism) - all calculations correct - correct rounding	- $(28 \times 20)+\left(\frac{1}{2} \times 20 \times 4 \cdot 5\right)$ - $\left[(28 \times 20)+\left(\frac{1}{2} \times 20 \times 4 \cdot 5\right)\right] \times 9$ - 5445 - 5
	Method 2 - strategy (volume of cuboid) - strategy (volume of triangular prism) - all calculations correct - correct rounding	- $9 \times 20 \times 28(5040)$ - $9 \times\left[\frac{1}{2} \times 20 \times 4 \cdot 5\right]$ (405) - 5445 - 5
	Method 3 - strategy (volume of extended cuboid) - strategy (volume of triangular prism) - all calculations correct - correct rounding	- $9 \times 20 \times 32.5$ (5850) - $9 \times\left[\frac{1}{2} \times 20 \times 4 \cdot 5\right]$ - 5445 - 5 4KU
NOTES: (i)	for candidates who calculate $28 \times 9 \times 20 \times$	$2 \cdot 5$, only the final mark is available

$\begin{array}{\|l\|} \hline \text { Question } \\ \text { No } \end{array}$	Give 1 mark for each •	Illustrations of evidence for awarding each mark
4	Ans: 2.61m - ratio - strategy - all calculations correct	- $\frac{65}{360}$ or $\frac{360}{65}$ - $\frac{65}{360} \times \pi \times 4 \cdot 6$ or $\pi \times 4 \cdot 6 \div \frac{360}{65}$ - 2.609
NOTES:		
(i) for	2.61 with or without working	award $3 / 3$
(ii) for	$1 \cdot 3(\times \pi \times 2 \cdot 3)$	award $2 / 3$
(iii) fo	$3 \cdot 0\left(\times \pi \times 2 \cdot 3^{2}\right)$	award 1/3
(iv) the $3^{\text {rd }}$ mark is available only for a calculation involving π		

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
5	Ans: $\quad 40 \mathrm{~cm}$ - valid strategy - substitution - processing - solution	- $\quad d \propto \frac{v}{r^{2}}$ or $d=\frac{k v}{r^{2}}$ - $50=\frac{k \times 60000}{20^{2}}$ - $k=\frac{1}{3}$ - 40
NOTES:		
(i)	$\text { for } 50\left(d \propto \frac{v}{r}\right)$	award 3/4
(ii)	$\text { for } 56\left(d \propto \frac{v}{\sqrt{r}}\right)$	award 3/4
	for $97.7\left(d \propto v r^{2}\right)$	award 2/4
(iv)	$\text { for } 62.5\left(d \propto \frac{r^{2}}{v}\right)$	award 2/4
(v)	for $78(d \propto v r)$	award 1/4
	accept an answer of 36 coming from $k=0.3$	

$\begin{gathered} \text { Question } \\ \text { No } \end{gathered}$	Give 1 mark for each -	Illustrations of evidence each mark	awarding
6	Ans: $\mathbf{£ 8 6 0}$ - valid strategy - processing - solution	- $104 \%=894 \cdot 40$ - $1 \%=\frac{894 \cdot 4}{104}$ or similar - 860	3KU
NOTES: (i) (ii) (iii) (iv) (v) (vi)	for 860 with or without working for $931 \cdot 67(96 \%=894 \cdot 4)$ with or without working for $930 \cdot 17$ (104% of 894.4) with or without wor for 858.62 (96% of 894.4) with or without worki CAUTION: Some candidates state $104 \%=894$ (iii) or (iv); in these cases, the $1^{\text {st }}$ mark is still av for candidates who ignore the initial 40p (leading mark available is $2 / 3$	ng king ing 40 and follow this as note vailable g to 859.62), the maximum	award $3 / 3$ award $2 / 3$ award $0 / 3$ award $0 / 3$

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
7	Ans: $\mathbf{1 8 . 3}$ metres Method 1 - strategy - processing - processing - solution Method 2 - strategy - strategy - processing	- $\sin 59^{\circ}=\frac{x}{8}$ - $x=6.86$ - $\sin 22^{\circ}=\frac{6 \cdot 86}{B C}$ - $\mathrm{BC}=18.3$ - $\angle \mathrm{BAC}=121^{\circ}$ - $\frac{a}{\sin 121^{\circ}}=\frac{8}{\sin 22^{\circ}}$ - $a=\frac{8 \sin 121^{\circ}}{\sin 22^{\circ}}$ - $a=18.3$
NOTES:		

$\begin{gathered} \hline \text { Question } \\ \text { No } \end{gathered}$	Give 1 mark for each •	Illustrations of evidence for awarding each mark
8	Ans: $\quad 15 \mathrm{~cm}^{2}$ - linear scale factor - area scale factor - solution	- $\frac{4}{0 \cdot 8}$ - $\left(\frac{4}{0 \cdot 8}\right)^{2}=25$ - 15
NOTES: (i)	for a final answer of $3\left(\frac{4}{0 \cdot 8} \times 0 \cdot 6\right)$	award 1/3

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
9	Ans: $\quad 1503.5 \mathrm{~cm}^{2}$ METHOD 1 - valid strategy - substitution - processing - solution	- $\frac{1}{2} a b \sin C$ - $\frac{1}{2} \times 40 \times 40 \times \sin 110^{\circ}$ - 751.75 - 1503.5
NOTES: (i) evidence for the $1^{\text {st }}$ mark may be implicit in the substitution		
	Ans: $\quad 1503.5 \mathrm{~cm}^{2}$ METHOD 2 - diagonal calculation - diagonal calculation - chosen strategy - solution	- $65 \cdot 5$ (one diagonal) - 45.9 - $\frac{1}{2} \times$ product of diagonals - 1503.5
NOTES: (i) evidence for $3^{\text {rd }}$ mark may be implicit in the final mark		
	Ans: $\quad 1503.5 \mathrm{~cm}^{2}$ METHOD 3 - base calculation - height calculation - area of one triangle - solution	- 22.95 - 32.75 - 375.875 - 1503.5 4RE
GENERAL NOTE:		

Question No	Give 1 mark for each •	Illustrations of evidence for awarding each mark
10 (a)	Ans: $\quad f=1 \cdot 2 d+1.8$ - gradient - y-intercept - linear equation	- 1.2 - 1.8 - $\quad f=1 \cdot 2 d+1 \cdot 8$
NOTES: (i) for a correct equation without working (ii) where the gradient and/or y-intercept are wrong, but explicitly stated, the $3^{\text {rd }}$ mark is still available		
(b)	Ans: £10.20 - substitution - evaluation	- $1 \cdot 2 \times 7+1 \cdot 8$ - $10 \cdot 2(0)$
NOTES: (i) for $10 \cdot 2(0)$ with or without working		

KU 28 marks
RE 25 marks
[END OF PAPER 2 MARKING INSTRUCTIONS]
Final KU 45
Totals RE 45

