2013 Mathematics

Standard Grade - Credit

Finalised Marking Instructions

© Scottish Qualifications Authority 2013
The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Part One: General Marking Principles for Mathematics Standard Grade - Credit

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.
(a) Marks for each candidate response must always be assigned in line with these general marking principles and the specific Marking Instructions for the relevant question. If a specific candidate response does not seem to be covered by either the principles or detailed Marking Instructions, and you are uncertain how to assess it, you must seek guidance from your Team Leader. For technical assistance, e-mail or phone the e-marker helpline.
(b) Marking should always be positive ie, marks should be awarded for what is correct and not deducted for errors or omissions.

GENERAL MARKING ADVICE: Mathematics Standard Grade - Credit

The marking schemes are written to assist in determining the "minimal acceptable answer" rather than listing every possible correct and incorrect answer. The following notes are offered to support Markers in making judgements on candidates' evidence.

Special Instructions

1 The main principle in marking scripts is to give credit for the skills which have been demonstrated. Failure to have the correct method may not preclude a pupil gaining credit for the calculations involved or for the communication of the answer.

2 The answer to one part, correct or incorrect must be accepted as a basis for subsequent dependent parts of a question. Full marks in the dependent part are possible if it is of equivalent difficulty.

3 Do not penalise insignificant errors. An insignificant error is one which is significantly below the level of attainment being assessed.
eg An error in the calculation of $16+15$ would not be penalised at Credit Level.
4 Working after a correct answer should only be taken into account if it provides firm evidence that the requirements of the question have not been met.

5 In certain cases an error will ease subsequent working. Full credit cannot be given for this subsequent work but partial credit may be given.

6 Accept answers arrived at by inspection or mentally, where it is possible for the answer to have been so obtained.

7 Do not penalise omission or misuse of units unless marks have been specifically allocated to units.

8 A wrong answer without working receives no credit unless specifically mentioned in the marking scheme.

The rubric on the outside of the Papers emphasises that working must be shown. In general markers will only be able to give credit to partial answers if working is shown. However there may be a few questions where partially correct answers unsupported by working can still be given some credit. Any such instances will be stated in the marking scheme.

9 Acceptable alternative methods of solution can only be given the marks specified, ie a more sophisticated method cannot be given more marks.

Note that for some questions a method will be specified.
10 In general do not penalise the same error twice in the one question.
11 Accept legitimate variations in numerical/algebraic questions.
12 Do not penalise bad form eg $\sin x^{\circ}=0.5=30^{\circ}$.
13 A transcription error, where a number has been erroneously transcribed from the examination question, is not normally penalised except where the question has been simplified as a result.

14 When multiple solutions are presented by the candidate and it is not clear which is intended to be the final one, mark all attempts and award the lowest mark.

15 If a response has been scored out and not replaced, the response should be marked as normal.
16 If multiple responses have been scored out and not replaced, Note 14 applies.

Part Two: Mathematics Standard Grade - Credit

Paper 1

Award marks in whole numbers only

Que	ion	Marking Scheme Give 1 mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •
1		Evaluate $86 \cdot 5-3 \cdot 651 \times 20$ Ans: 13.48 - ${ }^{1}$ knowing correct order of operations $\bullet \quad$ carrying out both calculations	2 (KU)	must involve a multiplication followed by a subtraction $\bullet^{2} \quad 13.48$
Notes (i) (ii) (iii)	for for for	.48 with/without working 56.98 with/without working .02 with no further calculation		award $2 / 2$ award $1 / 2$ award 0/2

	Marking Scheme Give 1 mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •
4	Change the subject of the formula to r. $A=4 \pi r^{2}$ Ans: $r=\sqrt{\frac{A}{4 \pi}}$ - ${ }^{1} \quad$ starting process - ${ }^{2} \quad$ finding the square root	2 (KU)	- $\quad r^{2}=\frac{A}{4 \pi}$ $\bullet^{2} \quad r=\sqrt{\frac{A}{4 \pi}}$
	\sqrt{A} $\frac{\sqrt{A}}{4 \pi}$ or $\sqrt{\frac{A \div 4}{\pi}}$ or $\sqrt{A \div 4 \div \pi}$ al mark is for taking the square root of	given	award $2 / 2$ award $1 / 2$

	stion	Marking Scheme Give 1 mark for each •			Max Mark	Illustrations of evidence for awarding a mark at each •
5	a	150 patients vaccine. The data is What is the a patient giv and aged 60 Ans: $\frac{12}{150}$ - 1 proce	e been n in th \qquad male 37 12 ability he flu over? quiva	flu below. was male	1 $(\mathbf{K U})$	- $\quad \frac{12}{150}$
Notes: (i) Do not accept answer in ratio form						
5	b	a patient giv 5 or under? Ans: $\frac{7}{150}$	he flu	was aged	1 $(\mathbf{K U})$	- ${ }^{1} \frac{7}{150}$
Notes: (i) an answer in ratio form in part (b) may be awarded the mark as a follow through error from (a)						

	stion	Marking Scheme Give 1 mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •
6	a	Joan buys gold and silver charms to make bracelets. 2 gold charms and 5 silver charms cost $£ 125$. Let g pounds be the cost of one gold charm and s pounds be the cost of one silver charm. Write down an equation in terms of g and s to illustrate the above information. Ans: $\mathbf{2 g}+\mathbf{5 s}=\mathbf{1 2 5}$ - ${ }^{1} \quad$ process	1 (KU)	- ${ }^{1} 2 g+5 s=125$
6	b	4 gold charms and 3 silver charms cost $£ 145$. Write down another equation in terms of g and s to illustrate this information. Ans: $\mathbf{4 g}+\mathbf{3 s}=\mathbf{1 4 5}$ - ${ }^{1}$ process	1 (KU)	-1 $4 g+3 s=145$
6	c	Hence calculate the cost of each type of charm. Ans: $g=25 ; s=15$ - ${ }^{1} \quad$ starting process - ${ }^{2} \quad$ value of one variable -3 value of a second variable	3 (RE)	- ${ }^{1} \quad$ evidence of scaling - ${ }^{2} \quad g=25$ $\bullet^{3} \quad s=15$
	for for	$=25$ and $s=15$ without working but check $=25$ and $s=15$ without working		equations award $1 / 3$ award $0 / 3$

Question		Marking Scheme Give 1 mark for each •	$\begin{gathered} \hline \text { Max } \\ \text { Mark } \\ \hline \end{gathered}$	Illustrations of evidence for awarding a mark at each •
7	a	Expand and simplify $(2 x-5)\left(x^{2}+3 x-7\right)$ Ans: $2 x^{3}+x^{2}-29 x+35$ - 1 starting to expand $\bullet \quad$ continuing to process - ${ }^{3}$ collecting like terms	3 $(\mathbf{K U})$	- ${ }^{1} \quad$ any 3 correct terms - $^{2} \quad$ a further 3 correct terms - ${ }^{3} \quad 2 x^{3}+x^{2}-29 x+35$
7	b	Solve the inequality $4 x-5 \leq 7 x-20$ Ans: $x \geq 5$ or $5 \leq x$ - ${ }^{1} \quad$ dealing with variable - ${ }^{2}$ dealing with constant - ${ }^{3} \quad$ solution	3 $(\mathbf{K U})$	- $1 \quad-3 x$ or $3 x$ - ${ }^{2} \quad-15$ or 15 -3 $\quad x \geq 5$ or $5 \leq x$

	Marking Scheme Give 1 mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •
8	Four straight line graphs are shown below. A C D Which one of these above could represent the line with equation $2 x+y=3$? Give two reasons to justify your answer. Ans: graph D - ${ }^{1}$ re-arranging $\bullet^{2} \quad$ understanding - ${ }^{3}$ conclusion	3 (RE)	$\begin{array}{ll} \bullet & y=-2 x+3 \\ \bullet & \begin{array}{l} m-\text { negative } \\ c-\text { positive } \end{array} \\ \bullet^{3} & D \end{array}$
Notes: (i) for an answer with no working (ii) for candidates who do not re-arrange, the $1^{\text {st }}$ mark can be awarded only if the correct gradient and intercept are stated			

		Marking Scheme Give 1 mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •
9	a	Quick-Smile photographers charge the following rates: - 50 p per photograph for the first 12 photographs printed - 35 per photograph for any further photographs printed - $£ 4.25$ for a CD of the photographs. How much will it cost to have 16 photographs printed plus a CD ? Ans: $£ 11 \cdot 65$ - ${ }^{1}$ starting the process - ${ }^{2} \quad$ calculation	2 (KU)	$\left.\begin{array}{ll} \bullet & \text { either }(12 \times 0.5) \ldots . .+4.25 \\ & \text { or }(16-12) \times 0.35 \end{array}\right)$
		1.65 with/without working mark may be awarded only for a correc		$\operatorname{ard} 2 / 2$ n involving all 3 rates.
9	b	Find a formula for C , the cost in pounds, of having x photographs printed (where x is greater than 12) plus a CD. Ans: $\quad(c=) 6+(x-12) 0.35+4.25$ - ${ }^{1} \quad$ starting strategy - ${ }^{2}$ continuing strategy - ${ }^{3}$ formula	3 (RE)	$\begin{array}{ll} \bullet^{1} & 12 \times 0.5 \\ \bullet^{2} & (x-12) \times 0.35 \\ \bullet^{3} & 6+(x-12) 0.35+4.25 \end{array}$
Notes: (i) ignore subsequent simplification (ii) candidates may work in pence, but final answer must be in pounds				

	tion	Marking Scheme Give 1 mark for each •	$\begin{gathered} \text { Max } \\ \text { Mark } \\ \hline \end{gathered}$	Illustrations of evidence for awarding a mark at each •
10	a	The parabola with equation $y=x^{2}-2 x-3$ cuts the x-axis at the points A and B as shown in the diagram. Find the coordinates of A and B. Ans: $\mathbf{A}(-1,0), \mathbf{B}(\mathbf{3}, \mathbf{0})$ - ${ }^{1}$ equating to zero - ${ }^{2}$ factorising - $3 \quad$ solving for x - ${ }^{4}$ co-ordinates	4 (RE)	-1 $\quad x^{2}-2 x-3=0$ - $^{2} \quad(x-3)(x+1)=0$ -3 $\quad x=-1$ or 3 - ${ }^{4} \quad \mathrm{~A}(-1,0), \mathrm{B}(3,0)$
	equa for cand	ng to zero must appear prior to solving rect coordinates with no working dates may draw graph - check page 15		ard 0/4 klet
10	b	Write down the equation of the axis of symmetry of $y=x^{2}-2 x-3$. Ans: $x=1$ - ${ }^{1} \quad$ calculation	1 (KU)	$\bullet^{1} \quad x=1$
Notes: (i) an answer of 1 is not sufficient to gain the mark				

Question		Marking Scheme Give 1 mark for each e	Max Mark	Illustrations of evidence for awarding a mark at each •
11	a	Jenny is doing calculations using consecutive numbers. She notices a pattern which always gives an answer of 1 . $\begin{array}{rlll}\text { Using } \quad 2,3,4 & \text { gives } & 3^{2}-2 \times 4=1 . \\ & 3,4,5 & \text { gives } & 4^{2}-3 \times 5=1 . \\ & 4,5,6 & \text { gives } & 5^{2}-4 \times 6=1 .\end{array}$ Using $8,9,10$, write down a similar pattern. Ans: $9^{2}-8 \times 10=1$ - ${ }^{1}$ statement	1 $(\mathbf{K U})$	- ${ }^{1} \quad 9^{2}-8 \times 10=$
Notes: (i) do not accept $9^{2}-8 \times 10$				
11	b	Using $n,(n+1),(n+2)$, show that the answer is 1 for any three consecutive numbers. Ans: proof - ${ }^{1} \quad$ beginning proof - ${ }^{2} \quad$ simplification - ${ }^{3}$ proof	3 (RE)	$\begin{array}{ll} \bullet & (n+1)^{2}-n(n+2) \\ \bullet^{2} & n^{2}+2 n+1-n^{2}-2 n \end{array}$
Notes: (i) for the $2^{\text {nd }}$ mark, brackets must be explicitly expanded (ii) the $3^{\text {rd }}$ mark can be awarded only if the $2^{\text {nd }}$ mark has been awarded				

KU 20

RE 18

Paper 2

Award marks in whole numbers only

	tion	Marking Scheme Give 1 mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •
1		A snail crawls 3 kilometres in 16 days. What is the average speed of the snail in metres per second? Give your answer in scientific notation correct to 2 significant figures. Ans: $\mathbf{2 . 2} \times \mathbf{1 0}^{-\mathbf{3}}$ - \quad evidence of correct formula with units -2 correct conversion of units -3 unrounded solution - correct rounding and scientific notation	4 $(\mathbf{K U})$	\bullet $\frac{3 \mathrm{~km}}{16 \text { days }}$ \bullet $\frac{3000}{16 \times 24 \times 60 \times 60}$ \bullet 0.00217 2.2×10^{-3}
Notes:				
(i) for 2.2×10^{-3} with/without working (ii) for $2 \cdot 17 \ldots \times 10^{-3}$, with or without working (iii) for $\frac{3}{16}$, leading to 1.9×10^{-1}				award 4/4
				award 3/4
				award 1/4
	for	followed by $\frac{3000}{16 \times 24 \times 60 \times 60}$		award the first two marks
	for	followed by a correct partial conversi		award the first mark

	Marking Scheme Give 1 mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •
2	Solve the equation $2 x^{2}+7 x-3=0$ Give your answers correct to 1 decimal place. Ans: 0.4 or $\mathbf{- 3 . 9}$ - ${ }^{1} \quad$ correct substitution into quadratic formula - ${ }^{2} \quad$ correct discriminant -3 unrounded solution -4 rounded solution	4 (KU)	$\begin{array}{ll} \bullet & \frac{-7 \pm \sqrt{7^{2}-4 \times 2 \times-3}}{4} \\ \bullet^{2} & 73 \\ \bullet & 0 \cdot 385,-3 \cdot 885 \\ \bullet & 0 \cdot 4,-3 \cdot 9 \end{array}$
Notes: alternative evidence for $3^{\text {rd }}$ and $4^{\text {th }}$ marks (i) only the first mark is available for candidates who process to a negative discriminant (ii) candidates who do not give an unrounded number cannot be awarded the last 2 marks, unless the final answer is $0.4,-3 \cdot 9$ where $3 / 4$ may be awarded			

Question		Marking Scheme Give 1 mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •
3	a	A concrete block is in the shape of a prism. The cross section of the prism is a trapezium with dimensions as shown. Calculate the area of the cross section. Ans: $540 \mathrm{~cm}^{2}$ - ${ }^{1} \quad$ beginning process $\bullet \quad$ processing - ${ }^{3} \quad$ calculation	3 (KU)	- $12 \times \frac{1}{2} \times 5 \times 20+(22 \times 20)$ or $\frac{1}{2} \times 20 \times(22+32)$ - ${ }^{2} \quad 100+440$ or 10×54 - ${ }^{3} \quad 540$
3	b	Calculate the volume of the concrete block. Ans: 32400 cm 3 - ${ }^{1}$ calculation	1 (KU)	- ${ }^{1} \quad 32400$

	Question	Marking Scheme Give 1 mark for each •	$\begin{gathered} \hline \text { Max } \\ \text { Mark } \end{gathered}$	Illustrations of evidence for awarding a mark at each •
	5	ABC is an isosceles triangle with angle $\mathrm{ACB}=30^{\circ}$. $\mathrm{AC}=\mathrm{BC}=x$ centimetres. The area of triangle $A B C$ is 9 square centimetres. Calculate the value of x. Ans: $x=6$ - ${ }^{1}$ correct substitution into area formula - ${ }^{2} \quad$ processing - ${ }^{3}$ solution	3	- $\quad 9=\frac{1}{2} \times x^{2} \times \sin 30^{\circ}$ - ${ }^{2} \quad 36$ ${ }^{3} \quad x=6$
Notes: (i) accept $9=\frac{1}{2} \mathrm{ab} \sin 30^{\circ}$ for first mark				

	Marking Scheme Give 1 mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •
8	As the pendulum of a clock swings, its tip moves through an arc of a circle. 36.7 cm The length of the pendulum is 50 centimetres. The length of the arc is 36.7 centimetres. Calculate x°, the angle through which the pendulum swings. Ans: $\mathbf{4 2}^{\circ}$ - ${ }^{1} \quad$ strategy - ${ }^{2} \quad$ strategy - ${ }^{3}$ solution	3 (RE)	$\begin{array}{ll} \bullet & \frac{x}{360} \\ \bullet^{2} & \frac{36 \cdot 7}{100 \pi} \\ \bullet^{3} & 42^{\circ} \end{array}$
Notes: (i) for use of $\mathrm{C}=\pi \mathrm{r}^{2}$, the $1^{\text {st }}$ and $3^{\text {rd }}$ marks are still available			

	Marking Scheme Give 1 mark for each	$\begin{gathered} \hline \text { Max } \\ \text { Mark } \\ \hline \end{gathered}$	Illustrations of evidence for awarding a mark at each •
9	In triangle THB: - angle TBH $=90^{\circ}$ - angle THB $=32^{\circ}$ G is a point on HB. - angle TGB $=57^{\circ}$ - GH $=46$ metres. Calculate the length of TB. Ans: $\mathbf{4 8 . 4} \mathbf{m}$ - ${ }^{1} \quad$ correct use of sine rule in triangle THG - ${ }^{2} \quad$ calculation - 3 appropriate trig ratio - ${ }^{4} \quad$ solution	4 (KU)	$\begin{array}{ll} \bullet & \frac{\mathrm{TG}}{\sin 32^{\circ}}=\frac{46}{\sin 25^{\circ}} \\ \bullet^{2} & \mathrm{TG}=57 \cdot 679 \ldots \\ \bullet^{3} & \sin 57^{\circ}=\frac{\mathrm{TB}}{57 \cdot 679 \ldots} \\ \bullet & \mathrm{~TB}=48 \cdot 37 \ldots \end{array}$
Notes: (i) do not penalise early rounding (ii) the $2^{\text {nd }}$ and $4^{\text {th }}$ marks are available only within a valid strategy			

Question		Marking Scheme Give 1 mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •
10	a	A function is given by the formula, $f(x)=4 \times 2^{x}$. Evaluate $f(3)$. Ans: 32 - ${ }^{1} \quad$ substitution $\bullet \quad$ calculation	2 $(\mathbf{K U})$	$\begin{array}{ll} \bullet & 4 \times 2^{3} \\ \bullet & 32 \end{array}$
10	b	Given that $f(m)=4$, find the value of m. Ans: $m=0$ - ${ }^{1}$ substitution - ${ }^{2} \quad$ solution	2 (RE)	$\begin{array}{ll} \bullet & 4=4 \times 2^{m} \\ \bullet & m=0 \end{array}$

Qu		Marking Scheme Give 1 mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •
11	a	Water flows through a horizontal pipe of diameter 60 centimetres. The surface width, AB , of the water is 55 centimetres. Calculate the depth, d, of the water in the pipe. Ans: 18.01 cm - recognition of right angle - ${ }^{2}$ processing - ${ }^{3}$ processing - ${ }^{4}$ solution	4 (KU)	$\begin{array}{ll}\text { - } & \text { use of Pythagoras } \\ \text { - }{ }^{2} & 30^{2}-27 \cdot 5^{2} \\ \text { - } & 11.99 \\ \text { - } & 18.01\end{array}$
Notes: (i) for one mark, the right angle may be stated or indicated on a diagram				
11	b	What other depth of water would give the same surface width? Ans: 41.99 cm - ${ }^{1}$ communication	1 (RE)	$\bullet 141.99$

Qu	Marking Scheme Give 1 mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •
12	Part of the graph of $y=1+\sin x^{\circ}$ is shown in the diagram below. The line $y=1.7$ is drawn. It cuts the graph of $y=1+\sin x$ at A and B as shown. Calculate the x-coordinates of A and B. Ans: $\mathbf{4 4 . 4}{ }^{\circ}, \mathbf{1 3 5} \cdot \mathbf{6}^{\circ}$ - ${ }^{1} \quad$ equating functions - ${ }^{2}$ processing -3 first solution -4 second solution	4 (RE)	$\bullet^{1} \quad 1+\sin x^{0}=1.7$ $\bullet^{2} \quad \sin x^{0}=0.7$ -3 44.4° - ${ }^{4} \quad 135 \cdot 6^{0}$
Not (i) (ii) (iii)	dates who obtain a negative value of \sin gles in the 3rd and 4th quadrants dates who give more than two answers $44 \cdot 4^{\circ}+90^{\circ}=134 \cdot 4^{\circ}$ this is close to the correct answer	may stil not be	be awarded the last two marks warded the last mark

	Marking Scheme Give 1 mark for each •	$\begin{gathered} \text { Max } \\ \text { Mark } \\ \hline \end{gathered}$	Illustrations of evidence for awarding a mark at each •
13	Ans: $x=11$ Method 1 - ${ }^{1}$ strategy - ${ }^{2} \quad$ applying scale factor - ${ }^{3}$ processing - ${ }^{4}$ solution	4	- $1 \quad$ scale factor $=\frac{35}{25}$ -2 $\left(\frac{7}{5}\right) \times 40$ $\bullet^{3} \quad 56$ ${ }^{-4} \quad 11$
	Ans: $x=11$ Method 2 - ${ }^{1} \quad$ strategy - ${ }^{2} \quad$ equating ratios - ${ }^{3} \quad$ cross multiplication -4 solution	(RE)	- $\frac{25}{40}$ or $\frac{35}{45+x}$ -2 $\frac{25}{40}=\frac{35}{45+x}$ -3 $25(45+x)=35 \times 40$

	Marking Scheme Give 1 mark for each •	$\begin{gathered} \text { Max } \\ \text { Mark } \end{gathered}$	Illustrations of evidence for awarding a mark at each •
14	In triangle ABC : - $\quad \cos \mathrm{A}=0.5$ - $\mathrm{AB}=6$ centimetres - $\mathrm{BC}=2 x$ centimetres - $\mathrm{AC}=x$ centimetres Show that $x^{2}+2 x-12=0$ Ans: $x^{2}+2 x-12=0$ - $1 \quad$ substitution into cosine rule $\bullet \quad$ processing - ${ }^{3}$ completion of proof	3 (RE)	- $\quad(2 x)^{2}=x^{2}+6^{2}-2 \times x \times 6 \times 0.5$ - $\quad 4 x^{2}=x^{2}-6 x+36$ - $\quad x^{2}+2 x-12=0$
Notes: (i) $2 x^{2}$ is to be treated as bad form for the $1^{\text {st }}$ mark (ii) the final mark is given only for an explicit statement			

KU 25
RE 27

OVERALL TOTAL MARKS

 45 KU 45 RE