2500/31/01

NATIONAL QUALIFICATIONS 2012

WEDNESDAY, 2 MAY 1.30 PM - 2.25 PM

MATHEMATICS STANDARD GRADE Credit Level Paper 1 (Non-calculator)

1 You may NOT use a calculator.

- 2 Answer as many questions as you can.
- 3 Full credit will be given only where the solution contains appropriate working.
- 4 Square-ruled paper is provided. If you make use of this, you should write your name on it clearly and put it inside your answer booklet.

FORMULAE LIST

The roots of
$$ax^2 + bx + c = 0$$
 are $x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$

Sine rule: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

Cosine rule: $a^2 = b^2 + c^2 - 2bc \cos A$ or $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$

Area of a triangle: Area = $\frac{1}{2}ab \sin C$

Standard deviation: $s = \sqrt{\frac{\sum (x - \overline{x})^2}{n-1}} = \sqrt{\frac{\sum x^2 - (\sum x)^2 / n}{n-1}}$, where *n* is the sample size.

1. Evaluate

$$7 \cdot 2 - 0 \cdot 161 \times 30.$$

2. Expand and simplify

$$(3x-2)(2x^2+x+5).$$

3. Change the subject of the formula to *m*.

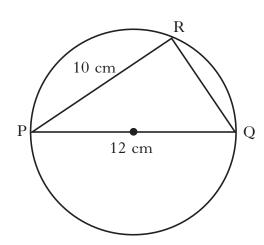
$$L = \frac{\sqrt{m}}{k}$$

4. In the diagram,

- PQ is the diameter of the circle
- PQ = 12 centimetres
- PR = 10 centimetres.

Calculate the length of QR.

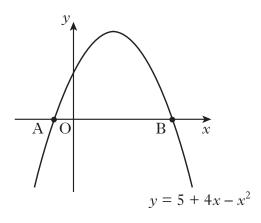
Give your answer as a surd in its simplest form.


[Turn over

KU RE

2

3


2

5. Mike is practising his penalty kicks. Last week, Mike scored 18 out of 30. This week, he scored 16 out of 25. Has his scoring rate improved?
Give a reason for your answer.

6. The diagram shows part of the graph of $y = 5 + 4x - x^2$.

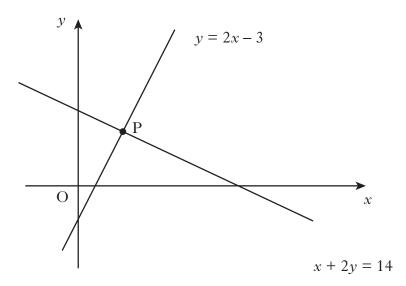
A is the point (-1, 0).

B is the point (5, 0).

(a) State the equation of the axis of symmetry of the graph.

(b) Hence, find the maximum value of $y = 5 + 4x - x^2$.

2 2


KU RE

7. Given $2x^2 - 2x - 1 = 0$, show that

$$x = \frac{1 \pm \sqrt{3}}{2}$$

- 8. The graph below shows two straight lines.
 - y = 2x 3

•
$$x + 2y = 14$$

The lines intersect at the point P.

Find, **algebraically**, the coordinates of P.

[Turn over for Questions 9, 10 and 11 on Page six

KU RE

9.	Ea	ch day, Marissa drives 40 kilometres to work.	KU	RE	
	(<i>a</i>)	On Monday, she drives at a speed of x kilometres per hour. Find the time taken, in terms of x , for her journey.	1		
	(<i>b</i>)	On Tuesday, she drives 5 kilometres per hour faster . Find the time taken, in terms of <i>x</i> , for this journey.		1	
	(<i>c</i>)	Hence find an expression, in terms of x , for the difference in times of the two journeys.			
		Give this expression in its simplest form .		3	
10.		Evaluate $(2^3)^2$. Hence find <i>n</i> , when $(2^3)^n = \frac{1}{64}$.	1	1	
11.	The	e sum of consecutive even numbers can be calculated using the following			
	nur	nber pattern: $2 + 4 + 6 = 3 \times 4 = 12$ $2 + 4 + 6 + 8 = 4 \times 5 = 20$ $2 + 4 + 6 + 8 + 10 = 5 \times 6 = 30$			
	(<i>a</i>)	Calculate $2 + 4 + \cdots + 20$.		1	
	(<i>b</i>)	Write down an expression for $2 + 4 + \cdots + n$.		1	
	(c)	Hence or otherwise calculate $10 + 12 + \cdots + 100$.		2	
		[END OF QUESTION PAPER]			

[BLANK PAGE]

[BLANK PAGE]

2500/31/02

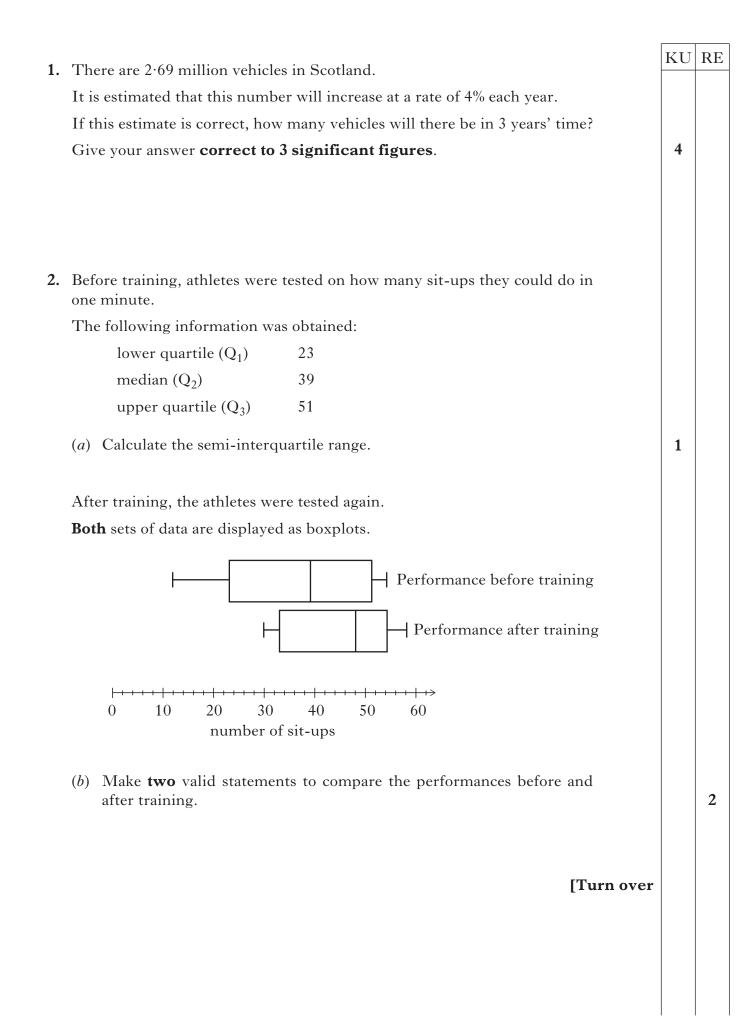
NATIONAL QUALIFICATIONS 2012

WEDNESDAY, 2 MAY 2.45 PM - 4.05 PM MATHEMATICS STANDARD GRADE Credit Level Paper 2

1 You may use a calculator.

- 2 Answer as many questions as you can.
- 3 Full credit will be given only where the solution contains appropriate working.
- 4 Square-ruled paper is provided. If you make use of this, you should write your name on it clearly and put it inside your answer booklet.

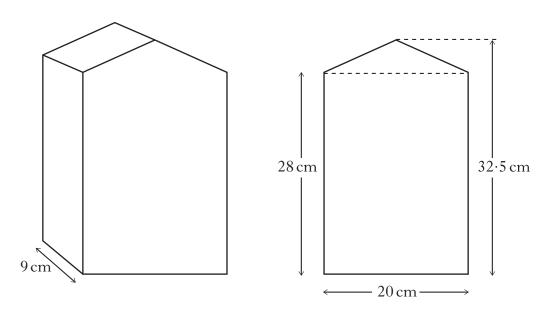
FORMULAE LIST


The roots of
$$ax^2 + bx + c = 0$$
 are $x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$

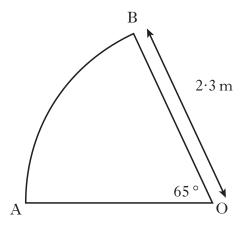
Sine rule: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

Cosine rule: $a^2 = b^2 + c^2 - 2bc \cos A$ or $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$

Area of a triangle: Area = $\frac{1}{2}ab \sin C$


Standard deviation: $s = \sqrt{\frac{\sum (x - \overline{x})^2}{n-1}} = \sqrt{\frac{\sum x^2 - (\sum x)^2 / n}{n-1}}$, where *n* is the sample size.

3. A container for oil is in the shape of a prism.


The width of the container is 9 centimetres.

The uniform cross section of the container consists of a rectangle and a triangle with dimensions as shown.

Calculate the volume of the container, **correct to the nearest litre.**

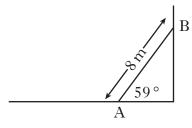
4. A sector of a circle, centre O, is shown below.

The radius of the circle is $2 \cdot 3$ metres.

Angle AOB is 65°.

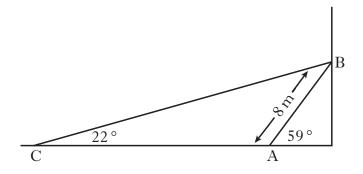
Find the length of the arc AB.

3

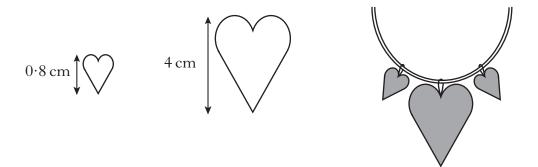

4

KU RE

5.	The depth, d , of water in a tank, varies directly as the volume, v , of water in the tank and inversely as the square of the radius, r , of the tank. When the volume of water is $60000\mathrm{cm}^3$, the depth of water is $50\mathrm{cm}$ and the radius of the tank is $20\mathrm{cm}$. Calculate the depth of the water, when the volume of water is $75000\mathrm{cm}^3$ and the radius of the tank is $25\mathrm{cm}$.	KU 4	RE	
6.	The price for Paul's summer holiday is $\pounds 894.40$. The price includes a 4% booking fee.			
	What is the price of his holiday without the booking fee?	3		


7. A heavy metal beam, AB, rests against a vertical wall as shown.

The length of the beam is 8 metres and it makes an angle of 59° with the ground.


A cable, CB, is fixed to the ground at C and is attached to the top of the beam at B.

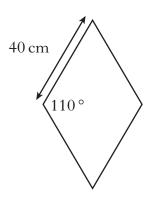
The cable makes an angle of 22° with the ground.

Calculate the length of cable CB.

8. A necklace is made of beads which are mathematically similar.

KU RE

3


4

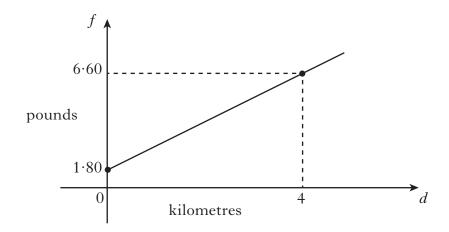
The height of the smaller bead is 0.8 centimetres and its area is 0.6 square centimetres.

The height of the larger bead is 4 centimetres.

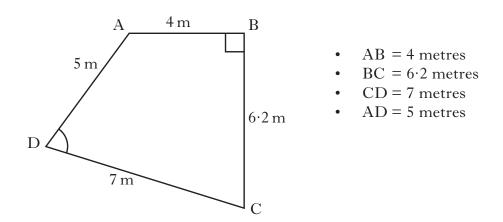
Find the area of the larger bead.

9. Paving stones are in the shape of a rhombus.

The side of each rhombus is 40 centimetres long.


The obtuse angle is 110° .

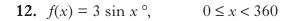
Find the area of one paving stone.


10. A taxi fare consists of a call-out charge of £1.80 **plus** a fixed cost per kilometre.

A journey of 4 kilometres costs $\pounds 6.60$.

The straight line graph shows the fare, *f* pounds, for a journey of *d* kilometres.

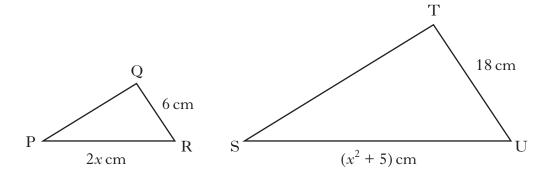
- (a) Find the equation of the straight line.
- (b) Calculate the fare for a journey of 7 kilometres.
- **11.** Quadrilateral ABCD with angle ABC = 90° is shown below.



- (*a*) Calculate the length of AC.
- (*b*) Calculate the size of angle ADC.

[Turn over for Questions 12 and 13 on Page eight

3


KU RE

- (*a*) Find *f*(270).
- (b) f(t) = 0.6.

Find the two possible values of *t*.

 Triangles PQR and STU are mathematically similar. The scale factor is 3 and PR corresponds to SU.

KU RE

4

2

3

1

- (a) Show that $x^2 6x + 5 = 0$.
- (b) Given QR is the shortest side of triangle PQR, find the value of x.

[END OF QUESTION PAPER]