- 1. $3.1 + 2.6 \times 4$ 3.1 + 10.4 13.5
- 2. $3\frac{5}{8} + 4\frac{2}{3}$

Add whole number parts: $7 + \frac{5}{8} + \frac{2}{3}$ Use common denominator of 24 $7 + \frac{15}{24} + \frac{16}{24} \rightarrow 7 + \frac{31}{24} \rightarrow 7 + 1\frac{7}{24}$

- $\rightarrow 8\frac{7}{24}$
- 3. $f(m) = m^2 3m$

$$f(-5) = (-5)^2 - 3(-5)$$
$$f(-5) = 25 + 15 \qquad \Longrightarrow \qquad \qquad$$

4. $2x - \frac{(3x-1)}{4} = 4$

Multiply throughout by 4; carefully!!

40

8x - (3x - 1) = 16

Simplify 8x - 3x + 1 = 16

5x+1=16 subtract 1 from each side 5x=15 divide both sides by 3 x=3

5. This table is a five figure summary for each supplier.

÷	Company	Minimum	Maximum	Lower Quartile	Median	Upper Quartile		
	Timberplan	16	56	34	38	45		
	Allwoods	18	53	22	36	49		
a) Draw hav rists								

a) Draw box plots

5b). The interquartile range of Timberplan is much lower than that of Allwoods, hence they are more consistent in their deliveries.

So use Timberplan

6. A is the point (a^2, a)

T is the point (t^2, t) $a \neq t$

Gradient =
$$\frac{\text{Rise}}{\text{Run}} = \frac{\text{Change in } y}{\text{Change in } x}$$

Change in y:
$$a-t$$

Change in x: $a^2 - t^2$
Gradient = $\frac{a-t}{a^2 - t^2}$

Note that $a^2 - t^2$ is difference of 2 squares i.e. (a+t)(a-t)

So, Gradient = $\frac{a-t}{a^2-t^2} = \frac{a-t}{(a+t)(a-t)}$

cancelling gives: $\frac{a-t}{(a+t)(a-t)} \Rightarrow \frac{1}{a+t}$

7a). Total number of cars: 50 + 80 + 160 + 20 + 60 + 100 + 120 + 10= 600 cars (also given this in the question)

> Less than 3 years old is the top row: 50 + 80 + 160 + 20 = 310 cars

P(less than 3 years old) = $\frac{310}{600} = \frac{31}{60}$

7b). From sample table : greater than 2000 cc and 3 or more years old = 10 cars.

Probability of this is $\frac{10}{600} \Rightarrow \frac{1}{60}$

So out of a sample of 4200 cars

We would expect: $\frac{1}{60} \times 4200 = 70$ cars

to be $>2000\ cc$ and 3 or more years old

- 8a). Coordinates of A are (0, -3)From equation, when x = 0, y = -3
- 8b). Solve the equation $4x^2 + 4x 3 = 0$ Factorise (2x-1)(2x+3) = 0

So:

$$2x-1=0 \implies 2x=1 \implies x=\frac{1}{2}$$

and

 $2x+3=0 \implies 2x=-3 \implies x=-\frac{3}{2}$

Looking at the graph, clearly,

B is $\left(-\frac{3}{2}, 0\right)$ and C is $\left(\frac{1}{2}, 0\right)$

8c). Since a parabola is symmetrical, the minimum value is at the bottom of the curve.

This will have its *x*-coordinate half way between B and C.

x-coordinate of minimum point is $-\frac{1}{2}$

use equation to find y, i.e. the minimum value

$$y = 4\left(-\frac{1}{2}\right)^2 + 4\left(-\frac{1}{2}\right) - 3$$
$$y = 1 - 2 - 3 \implies -4$$

minimum value of : $y = 4x^2 + 4x - 3$ is -4

- 9a) Look at the pattern: $7^3 + 1 = (7+1)(7^2 - 7 + 1)$
- 9b). Again looking at the pattern $n^{3}+1 = (n+1)(n^{2}-n+1)$

9c).
$$8p^3 + 1 \implies 8p^3 + 8 - 7$$

Take out common factor of 8 in 1st 2 terms.
 $8(p^3 + 1) - 7$ and using result from (b)
 $8(p+1)(p^2 - p + 1) - 7$

10. $\frac{\sqrt{3}}{\sqrt{24}}$ use rules of surds to combine

i.e.
$$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$$
 So $\frac{\sqrt{3}}{\sqrt{24}} \Rightarrow \sqrt{\frac{3}{24}}$

Simplify:

$$\sqrt{\frac{3}{24}} \Rightarrow \sqrt{\frac{1}{8}} \quad \text{Look for largest square in 8}$$
$$\sqrt{\frac{1}{8}} \Rightarrow \sqrt{\frac{1}{4 \times 2}} \quad \text{Use rules of surds again}$$

i.e.
$$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}} \qquad \sqrt{\frac{1}{4 \times 2}} \implies \frac{1}{\sqrt{4 \times 2}}$$

Now use rule for product of surds:

i.e.
$$\sqrt{a \times b} = \sqrt{a} \times \sqrt{b} \qquad \Rightarrow \frac{1}{2\sqrt{2}}$$

To rationalise the denominator, multiply top and bottom by $\sqrt{2}$.

$$\Rightarrow \frac{1}{2\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{4} \text{ (since } \sqrt{a} \times \sqrt{a} = a\text{)}$$

11.a)
$$I = \frac{20}{2^c} \quad \text{put } c = 3$$
$$I = \frac{20}{2^3} \quad \Rightarrow \quad I = \frac{20}{8} \quad \Rightarrow \quad I = \frac{5}{2}$$

11b).
$$I = \frac{20}{2^c}$$
 put $I = 10$
 $10 = \frac{20}{2^c} \implies 10 \times 2^c = 20$

divide both sides by 10

 $\Rightarrow 2^c = 2$ so, c = 1

11c). Maximum possible intensity is when the denominator is as small as possible. This will be when c = 0

$$I = \frac{20}{2^0} \implies I = \frac{20}{1} \implies I = 20$$

because $2^0 = 1$

END OF QUESTION PAPER (Rev. March 2007)

CREDIT 2001 – Paper II

 $10000 \times 60 \text{ per hour}$ $10000 \times 60 \times 24 \text{ per day}$ (2001 is not a leap year, so only 365 days) $10000 \times 60 \times 24 \times 365 \text{ per year}$ $= 5\ 256\ 000\ 000\ \text{chocpops}$

Put in standard form: $=5.256 \times 10^9$ chocpops

2.

1.

	x	$x - \overline{x}$	$(x-\overline{x})^2$
	84.2	-0.13	0.0169
	84.4	0.07	0.0049
	85.1	0.77	0.5929
	83.9	-0.43	0.1849
	81.0	-3.33	11.0889
	84.2	-0.13	0.0169
	85.6	1.27	1.6129
	85.2	0.87	0.7569
	84.9	0.57	0.3249
	84.8	0.47	0.2209
TOTAL	843.3		14.821

a) Mean =
$$\frac{\sum x}{n} = \frac{843.3}{10} = 84.33$$

S.D. =
$$\sqrt{\frac{14.821}{9}} = \sqrt{1.6468} = 1.283.... = 1.3$$

b) The rural prices are more expensive (mean = 88.8) with more variation in the prices (std. dev = 2.4)

Note: this is where the alternative formula would be easier.

	x	x^2
	84.2	7089.64
	84.4	7123.36
	85.1	7242.01
	83.9	7039.21
	81.0	6561
	84.2	7089.64
	85.6	7327.36
	85.2	7259.04
	84.9	7208.01
	84.8	7191.04
TOTAL	843.3	71130.31

The period of time 1999 – 2002 is 3 years Value of house in 2002 $90,000 \times 1.05^3 = \pounds 104,186.25$ Value of contents in 2002 $60,000 \times 0.92^3 = \pounds 46,721.28$ Total value House & Contents: $= \pounds 104,186.25 + \pounds 46,721.28$ $= \pounds 150,907.53$

4.

a)

3.

gradient = $m = \frac{rise}{run} = \frac{6-2}{12-0} = \frac{4}{12} = \frac{1}{3}$ y-intercept = c = 2Using: y = mx + cEquation is: $y = \frac{1}{3}x + 2$ multiply throughout by 3 3y = x + 6 now rearrange to required form 3y - x = 6

b) To find coordinates where pipes cross. solve the equations simultaneously.

 $3y - x = 6 \quad (1)$ $4y + 5x = 46 \quad (2)$ Multiply (1) by 5 15y - 5x = 30 4y + 5x = 46Add equations $19y = 76 \quad \rightarrow \quad y = 4$

Substitute into equation (1)

$$3(4) - x = 6 \rightarrow 12 - x = 6$$

Hence x = 6

Coordinates are: (6, 4)

5. First find the volume of the can:

Volume of can (cylinder) = $\pi r^2 h$ diameter = 6.5 cm, so radius = 3.75 cm

$$Vol = \pi \times 3.75^2 \times 15 = 662.679... \text{ cm}^3$$

New can has same volume, but with height, 12 cm. This time we want the diameter. So let the radius be r.

 $662.7 = \pi \times r^{2} \times 12$ rearrange: $\frac{662.7}{\pi \times 12} = r^{2}$ hence $r^{2} = \frac{662.7}{\pi \times 12} = 17.578...$ So radius, $r = \sqrt{17.578...} = 4.192...$ Hence diameter = 8.385 ... = **8.4 cm**

Possum is on bearing of 130° from Kangaroo Hence: \angle WKP = 130°

We want the bearing of Possum from Wallaby i.e. the angle from North - W - P

If we can find $\angle KWP$, then we can take this from 180°

Using the sine rule, we can find $\angle KPW$, then this will let us find $\angle KWP$

Using the sine rule (with the angle form):

$$\frac{\sin P}{p} = \frac{\sin K}{k} \rightarrow \frac{\sin P}{250} = \frac{\sin 130^{\circ}}{410}$$

rearrange: $\rightarrow \sin P = \frac{250 \times \sin 130^{\circ}}{410}$
so, $\sin P = 0.4671 \rightarrow P = \sin^{-1}(0.4671)$

So P = 27.846... = 28° In triangle KPW, $130^{\circ} + 28^{\circ} = 158^{\circ}$ and so $\angle KWP = 180^{\circ} - 158^{\circ} = 22^{\circ}$ And bearing of Possum from Wallaby is: $180^{\circ} - 22^{\circ} = 158^{\circ}$ **Possum** is on a **bearing of 158**° from **Wallaby**.

7. Solve $\tan 40^\circ = 2\sin x^\circ + 1$ $0 \le x \le 360$ $\tan 40^\circ$ is just a number, so replace it. $\tan 40^\circ = 0.839$ Hence: $0.839 = 2\sin x^\circ + 1$ So, $0.839 - 1 = 2\sin x^\circ$ i.e. $2\sin x^\circ = 0.839 - 1$ simplify and divide by 2 $\sin x^\circ = -0.0805$ (Ignore the - sign, deal with this using ASTC)

8.

Volume of prism = Area of cross section \times length

Area of cross section: $=\frac{1}{2}ab \sin C$ $=\frac{1}{2} \times 8 \times 14 \times \sin 100^\circ = 55.149... = 55.1 \text{ cm}^2$ Volume of prism = $55.1 \times 5 = 275.5 \text{ cm}^3$ 9. Set up a proportionality

$$R \propto L$$
 and $R \propto \frac{1}{d^2}$

Combining these into an equation with a proportionality constant *k*.

$$R = k \frac{L}{d^2}$$

Now use information given in question.

Wire A:
$$R = k \frac{3}{2^2} \rightarrow R = \frac{3k}{4}$$

Wire B: $R = k \frac{L}{3^2} \rightarrow R = \frac{kL}{9}$

The resistances are the same so:

$$\rightarrow \quad \frac{kL}{9} = \frac{3k}{4},$$

cross multiply to remove fractions:

→
$$4kL = 27k$$
 cancel k from each side,
→ $L = \frac{27}{4} = 6.75$ metres

Cosine Rule

Using formula on formulae sheet:

 $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$

$$\cos A = \frac{12^2 + 14^2 - 21^2}{2 \times 12 \times 14} = -0.3005..$$

Remembering to use the calculator to find an acute angle, you take care of the negative sign.

acute A =
$$\cos^{-1}(0.3005) = 72.51...$$

The cosine is negative
in 2^{nd} and 3^{rd} quadrants.72.72.72.

We want the obtuse angle.

70 cm

h

А

S

i.e.
$$(2^{nd} \text{ quadrant})$$
 $180 - 72.5 = 107.5^{\circ}$

Obtuse angle table top makes with leg = 107.5°

b) We need another sketch. The acute angle between leg and table top is 72.5°

This time use SOH-CAH-TOA Use sine.

$$\sin 72.5 = \frac{h}{70} \rightarrow h = 70 \sin 72.5 = 66.76...$$

Height of table is 66.8 cm

11 a) new length:
$$30 + x$$
 cm

b) new width: 20 + x cm

Hence Area = length × breadth New Area = (30+x)(20+x)

Use FOIL: $A = 600 + 30x + 20x + x^2$ *Tidy up:* $A = x^2 + 50x + 600$

c) New area to be at least 40% more Original area = $20 \times 30 = 600 \text{ cm}^2$ New area min: $600 \times 1.4 = 840 \text{ cm}^2$

> Hence minimum dimensions require: $840 = x^2 + 50x + 600$ Rearrange to normal form: i.e. $x^2 + 50x - 240 = 0$

Use quadratic formula

with
$$a = 1, b = 50, c = -240$$

$$x = \frac{-50 \pm \sqrt{(50)^2 - 4(1)(-240)}}{2(1)}$$
$$x = \frac{-50 \pm \sqrt{2500 + 960}}{2} = \frac{-50 \pm \sqrt{3460}}{2}$$

Hence: x = -54.41 cm, or x = 4.41 cm

Hence minimum value of *x* has to be **5 cm** (*to nearest cm*) [discard negative value]

END OF QUESTION PAPER (Rev. March 2007)