CREDIT 2002 - Paper I (Solutions)

1. $7.18-2.1 \times 3$
7.18-6.3
0.88
2. $1 \frac{1}{8} \div \frac{3}{4} \rightarrow \frac{\phi^{3}}{\not \phi^{2}} \times \frac{\not 一 ⿻^{1}}{\not p^{1}} \rightarrow \frac{3}{2} \rightarrow 1 \frac{1}{2}$
3. $5-x>2(x+1) \rightarrow 5-x>2 x+2$

$$
\rightarrow 5-2>2 x+x \rightarrow 3>3 x \rightarrow 1>x
$$

$$
\rightarrow x<1
$$

4. $f(x)=x^{2}+5 x \rightarrow f(-3)=(-3)^{2}+5(-3)$

$$
\rightarrow \quad f(-3)=9-15=-6
$$

5. a) $p^{2}-4 q^{2} \rightarrow(p+2 q)(p-2 q)$
b) $\frac{p^{2}-4 q^{2}}{3 p+6 q} \rightarrow \frac{(p+2 q)(p-2 q)}{3(p+2 q)} \rightarrow \frac{(p-2 q)}{3}$
6. $L=\frac{1}{2}(h-t) \rightarrow 2 L=h-t \rightarrow 2 L+t=h$

$$
\rightarrow \quad h=2 L+t
$$

7. Use Cosine Rule

$$
\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}
$$

$\cos A=\frac{5^{2}+4^{2}-6^{2}}{2(5)(4)} \rightarrow \frac{5}{40} \rightarrow \frac{1}{8}$
8. Use Box plot (or back to back stem \& leaf)
$1^{\text {st }}$ Set:
$\mathrm{Lo}=11, \mathrm{Q}_{1}=25, \mathrm{Q}_{2}=34, \mathrm{Q}_{3}=46, \mathrm{Hi}=50$
$2^{\text {nd }}$ Set:
$\mathrm{Lo}=15, \mathrm{Q}_{1}=22, \mathrm{Q}_{2}=31, \mathrm{Q}_{3}=39, \mathrm{Hi}=46$

9. $f(x)=g(x) \Rightarrow x^{2}+2 x-1=5 x+3$

$$
\begin{gathered}
\quad \rightarrow \quad x^{2}-3 x-4=0 \\
\quad \rightarrow \quad(x-4)(x+1)=0 \\
\rightarrow x-4=0 \text { or } x+1=0 \\
\text { Hence, } x=4 \text { or } x=-1
\end{gathered}
$$

10. $\sqrt{27}+2 \sqrt{3} \Rightarrow \sqrt{9 \times 3}+2 \sqrt{3}$

$$
\begin{gathered}
\Rightarrow \sqrt{9} \sqrt{3}+2 \sqrt{3} \Rightarrow 3 \sqrt{3}+2 \sqrt{3} \\
\Rightarrow 5 \sqrt{3}
\end{gathered}
$$

11. $y^{8} \times\left(y^{3}\right)^{-2} \rightarrow y^{8} \times y^{-6} \rightarrow y^{2}$
12. A has co-ordinates $(0,12)$

B has co-ordinates $(90,82)$
gradient $\mathrm{AB}=\frac{82-12}{90-0} \rightarrow \frac{70}{90} \rightarrow \frac{7}{9}$
Using $y=m x+c$

$$
g=\frac{7}{9} h+12
$$

13. Let cost of peach $=p$ pence

Let cost of grapefruit $=g$ pence
a) $4 p+3 g=130$
b) $2 p+4 g=120$

Solve simultaneously
(1) $\ldots . . \quad 4 p+3 g=130$
(2) $\times 2 . .4 p+8 g=240$

Subtract: (4) - (3)

$$
5 g=110
$$

Hence $g=22$, substitute into (1)
$4 p+66=130$ hence $\mathrm{p}=16$
Thus 3 peaches +2 grapefruit cost
$3 \times 16+2 \times 22=92$ pence .

CREDIT - 2002 Paper II (Solutions)

1. $19.06 \times 10^{-5} \times 18=0.0034308$
$=3.43 \times 10^{-3}$ (3 sig figs)
2. Price includes 17.5% VAT

So, $117.5 \%=£ 150$
Hence $1 \%=\frac{150}{117.5}$
So $100 \%=\frac{150}{117.5} \times 100=127.659 \ldots$
Price ex-VAT $=£ 127.66$
3. $2 x^{2}+3 x-7=0$

Use the quadratic formula: $\mathrm{a}=2, \mathrm{~b}=3, \mathrm{c}=-7$

$$
\begin{gathered}
x=\frac{-3 \pm \sqrt{3^{2}-4(2)(-7)}}{2(2)} \rightarrow \frac{-3 \pm \sqrt{9+56}}{4} \\
x=\frac{-3 \pm \sqrt{65}}{4} \rightarrow \frac{-3-8.06}{4} \text { or } \frac{-3+8.06}{4} \\
x=-2.8 \text { or } 1.3 \text { (1 d.p.) }
\end{gathered}
$$

4.

ASA - use Sine Rule to find either side ST or SV The use SOH-CAH-TOA to find perpendicular height.

First find angle at $\mathrm{S}=180^{\circ}-\left(35^{\circ}+40^{\circ}\right) \quad \mathrm{S}$ is 105°

$$
\frac{\mathrm{ST}}{\sin 40}=\frac{500}{\sin 105}
$$

$$
\mathrm{ST}=\frac{500 \sin 40}{\sin 105} \Rightarrow \mathrm{ST}=332.731 \ldots
$$

S	$\sin 35=\frac{h}{332.7}$
height of satellite $=191 \mathrm{~km}$	

5. Trough is a prism with cross-section as shown.

Area of cross-section $=$ Area rectangle + semi circle

Radius of semi-circle $=0.6 \mathrm{~m} \div 2=0.3$ metres
Area of cross-section $=0.6 \times 0.25+1 / 2 \pi 0.3^{2}$

$$
=0.15+0.1413 \ldots=0.2913 \ldots
$$

Volume $=A \times l=0.2913 \ldots \times 4$
Volume of trough $=1.1654866 \ldots=1.2 \mathrm{~m}^{3}(2$ s.f. $)$
6.

a)

$$
\mathrm{OP}=2.1 \mathrm{~m} \text { (radius) }
$$

Hence, $\mathrm{OC}=3.4-2.1=1.3 \mathrm{~m}$
Using Pythagoras in \triangle OCB

$$
\begin{gathered}
C B^{2}+1.3^{2}=2.1^{2} \\
C B^{2}=2.1^{2}-1.3^{2} \\
C B=\sqrt{2.72}=1.649 \ldots
\end{gathered}
$$

But x is twice CB
So, width of oil $=3.298 \ldots=3.30 \mathrm{~m}$ (3 s.f. $)$
b) By symmetry, the other depth of oil is

$2.1-1.3=0.8 \mathrm{~m}$

CREDIT - 2002 Paper II (Solutions) continued ...
7. Brazilian : Columbian

2 : 3
20 kg of Brazilian, would require 30 kg of Columbian coffee, there is not enough Columbian coffee, so we need to see how much an be made with the Columbian coffee

Each 1 kg tin contains
400 gm Brazilian : 600 gm Columbian

$$
\text { So } 25 \mathrm{~kg}=25000 \mathrm{gm}
$$

$25000 \div 600=41.667 \ldots .$. tins
Hence 41 one kg tins can be made
8. We have to solve the simultaneous equations

$$
y=0.4 \text { and } y=\sin x
$$

Hence, solve $\sin x=0.4$
acute value of x is $\quad \sin ^{-1} 0.4=23.6^{\circ}$

Use ASTC

sine is positive (+)
So quadrants $1 \& 2$

Hence, x is 23.6° or $180-23.6^{\circ}=156.4^{\circ}$
Co-ords are: $\quad \mathrm{A}\left(23.6^{\circ}, 0.4\right)$ and $\mathrm{B}\left(156.4^{\circ}, 0.4\right)$
9. a) Cost of 10 minutes Easy Call

$$
=3 \times 25 p+7 \times 5 p=£ 1.10
$$

b) Easy Call: Cost of m minutes $(m>3$)

$$
\begin{aligned}
& =75+(\mathrm{m}-3) \times 5 \text { pence } \\
& =75+5 \mathrm{~m}-15 \\
& =60+5 \mathrm{~m} \text { pence. }
\end{aligned}
$$

c) Green Call: Cost of m minutes ($m>2$)
$=80+(\mathrm{m}-2) \times 2$ pence
$=80+2 \mathrm{~m}-4$
$=76+2 \mathrm{~m}$ pence
d) For Green Call to be cheaper, then

$$
\begin{aligned}
76+2 \mathrm{~m} & <60+5 \mathrm{~m} \\
76-60 & <5 \mathrm{~m}-2 \mathrm{~m} \\
16 & <3 \mathrm{~m} \\
\mathrm{~m} & >16 \div 3 \\
\mathrm{~m} & >5.33 \text { minutes }
\end{aligned}
$$

Least number of minutes used for this to be true is $\mathbf{6}$ minutes (to nearest minute)
10. a) $T=\frac{k v^{2}}{r}$
b) Speed $\times 3$ then $\mathrm{T} \times 3^{2}$

Radius is halved then $\mathrm{T} \times 2$
If both occur then $\mathrm{T} \times 3^{2} \times 2=\mathrm{T} \times 18$
Hence, Tension, T, is multiplied by 18
11. a) $2^{n}=32 \Rightarrow n=5$
b) Expression for 5 numbers is:
$(1+2+4+8+16)=32-1$
c) From above we see

Last number of 5 numbers is 16 , i.e. 2^{4}
5 numbers $\rightarrow 2^{5-1}=2^{4}$
Last number of n numbers is 2^{n-1}
$\left(1+2+\ldots \ldots+2^{\mathrm{n}-1}\right)=2 \times 2^{\mathrm{n}-1}-1$
i.e. $\quad 2^{n}-1$
12.

Figure 1

Use similar triangles

$$
\frac{B P}{B A}=\frac{1}{1.5} \rightarrow \frac{B P}{6}=\frac{1}{1.5}
$$

Hence $\quad B P=\frac{6}{1.5}=4$ metres

Using similar triangles again

$$
\frac{h t B}{h t P}=\frac{A B}{A P} \rightarrow \frac{h t B}{1}=\frac{6}{2}
$$

So height of \mathbf{B} above the ground $\mathbf{=} \mathbf{3}$ metres.

