CREDIT 2003 – Paper I

1.
$$5.04 + 8.4 \div 7$$

 $5.04 + 1.2$
 6.24

2.
$$\frac{2}{7} \left(\frac{1}{3} + \frac{3}{8} \right) \Rightarrow \frac{2}{7} \left(\frac{7}{4} + \frac{3}{8} \right) \Rightarrow \frac{2}{7} \left(\frac{14}{8} + \frac{3}{8} \right)$$
$$\Rightarrow \frac{\cancel{2}^{1}}{7} \times \frac{17}{\cancel{8}^{4}} \Rightarrow \frac{17}{28}$$

3.
$$3(2x-4)-4(3x+1) \\ \rightarrow 6x-12-12x-4 \\ \rightarrow -6x-16$$

4. a)
$$f(x) = 7 - 4x$$

 $\rightarrow f(-2) = 7 - 4(-2)$
 $\rightarrow 7 + 8 \rightarrow 15$

b)
$$f(t) = 7 - 4t$$

Since $f(t) = 9 \rightarrow 9 = 7 - 4t$
 $4t = -2 \rightarrow t = -\frac{1}{2}$

5.
$$2x^2 - 7x - 15 \rightarrow (2x+3)(x-5)$$

6. a)
$$m = \frac{rise}{run} = \frac{3 - (-7)}{4 - (-1)} = \frac{10}{5} = 2$$

b)
$$y = mx + c$$
, so $y = 2x - 5$ (since $c = -5$)

c)
$$(3k, k)$$
 must satisfy the equation $k = 2(3k)$ -5 $k = 6k - 5$ $k = 1$

7. Let cost of 1 night = £ n, breakfast = £ b

a)
$$3n + 2b = 145$$
(1)

b)
$$5n + 3b = 240$$
(2)

multiply $(1) \times 5$ and (2) by 3 to eliminate n, leaving b

$$15n + 10b = 725$$
 ... (3)
 $15n + 9b = 720$ (4)

$$15n + 9b = 720$$
 ... (4)

Subtract: (3) - (4)b=5

Hence cost of one breakfast = £5

8. 40 balls altogether

a)
$$P(6) = \frac{4}{40} \rightarrow \frac{1}{10}$$

b) P(yellow 6) =
$$\frac{1}{40}$$

9. Each line in the box represents a quartile.

Lower quartile is 25%

So 25% of matchboxes contain less than 50 matches

10. Parents: Teacher: Pupils 3

hence for 45 pupils

9 :

9 teachers must accompany them

ii) Each group contains 15 + 3 + 1 = 19 persons so 5 groups can go $(5 \times 19 = 95)$ Hence $(5 \times 15 = 75)$ So, 75 pupils can go.

11. i)
$$S_3 = 1 + 3 + 5 = 9$$

ii) also
$$S_4 = 16$$
 and $S_5 = 25$

So,
$$S_n = n^2$$

the $(n+1)^{th}$ term is the term that is added onto S_n to get S_{n+1}

> Hence this term is S_{n+1} - S_n $= (n+1)^2 - n^2$ = $n^2 + 2n + 1 - n^2 = 2n + 1$

12. i)
$$8^{\frac{2}{3}} = (\sqrt[3]{8})^2 = 2^2 = 4$$

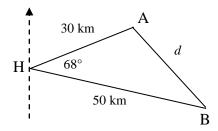
ii)
$$\frac{\sqrt{24}}{\sqrt{2}} = \sqrt{\frac{24}{2}} = \sqrt{12} = \sqrt{4 \times 3} = \sqrt{4}\sqrt{3} = 2\sqrt{3}$$

Let TD = hLength DB = 3x - x = 2x13. Area of triangular pocket = $\frac{1}{2}$ base x height Area triangle = $\frac{1}{2} \times 2x \times h \rightarrow xh$ Area of clipboard = $3x \times 4x = 12x^2$ Area triangle = 1/4 area clipboard So, $x h = 3x^2$ Hence: h = 3x

CREDIT - 2003 Paper II

1. $5000 \times 1.006^3 = 5090.54...$ = 5090 (3 sig figs)

2.


	x	$x - \overline{x}$	$(x-\overline{x})^2$
	49	3	9
	44	-2	4
	41	-5	25
	52	6	36
	47	1	1
	43	-3	9
TOTAL	276		84

a) Mean =
$$\frac{\sum x}{n} = \frac{276}{6} = 46$$

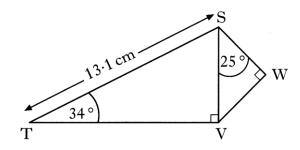
b) S.D. =
$$\sqrt{\frac{84}{5}} = \sqrt{16.8} = 4.09.... = 4.1$$

- c) The price of the milk is more variable.

 The price of the sugar is more consistent.
- 3. Draw a diagram, and mark in given bearings which show that $\angle AHB = 68^{\circ} (140^{\circ} 72^{\circ})$

Look at diagram - SAS - Cosine Rule $d^2 = 30^2 + 50^2 - 2 \times 30 \times 50 \times \cos 68^\circ$ $d^2 = 3400 - 1123.819... = 2276.181...$ d = 47.70933..... yachts are 47.7 km apart when they stopped.

4. a) Vol = $\pi r^2 h = \pi \times 5^2 \times 14 = 1099.557...$ = 1100 cm³ (3 sig figs) [note: d = 10 so r = 5] b) $600 = \pi r^2 h$ $600 = \pi 5^2 \times h$ $h = \frac{600}{25\pi}$ h = 7.639...depth of coffee = 7.6 cm (1 d.p.) 5. Using a formula

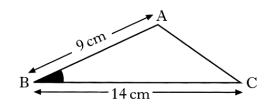

$$d = \frac{n(n-3)}{2} \to 20 = \frac{n(n-3)}{2}$$

$$\to 40 = n(n-3) \to 40 = n^2 - 3n$$

$$\to n^2 - 3n - 40 = 0 \to (n+5)(n-8) = 0$$
So $n = -5$, or 8

Polygon has 8 sides (-5 is not possible – discard)

6.


Use SOH-CAH-TOA (twice)

Find SV and then SW

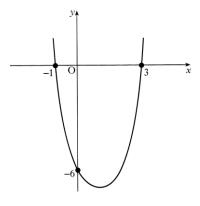
In
$$\triangle$$
STV $\frac{SV}{13.1} = \sin 34 \rightarrow SV = 13.1 \sin 34$
SV = 7.3254... centimetres

In
$$\triangle$$
SWV $\frac{SW}{SV} = \cos 25 \rightarrow SW = 7.33\cos 25$
SW = 6.643... = 6.6 centimetres (1 d.p.)

7.

Area of triangle = $=\frac{1}{2}ab \sin C$

Transpose letters.


$$38 = \frac{1}{2} \times 9 \times 14 \times \sin B \qquad 38 = 63 \sin B$$

Re-arrange:
$$\sin B = \frac{38}{63}$$
 B = $\sin^{-1} (38 \div 63)$

Hence
$$B = 37.096...$$
 $B = 37^{\circ}$

Credit 2003 – Paper 2 (continued)

8.

$$y = k(x-a)(x-b)$$

a) a and b are where the graph cuts the x-axis.

$$a = -1$$
 and $b = 3$

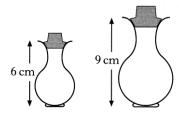
b) Put these values in equation

$$y = k(x-(-1))(x-3)$$
 $y = k(x+1)(x-3)$

Now choose a point on the curve

Do **NOT** choose on the *x*-axis since y = 0, this will not be of much use to you.

Choose point (0, -6)This point lies on the curve, so it satisfies equation of the curve.

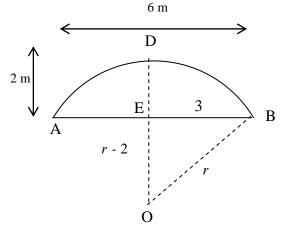

$$-6 = k(0+1)(0-3) \rightarrow -6 = -3k$$

So
$$k = 2$$

c) min. turning point lies on axis of symmetry mid way between roots. x = 1

when
$$x = 1$$
, $y = 2(1 + 1)(1 - 3)$ $y = -8$ co-ords of min t.p. are $(1, -8)$

9.



Linear Scale factor = $\frac{9}{6} \rightarrow \frac{3}{2}$

Scale factor for volume must be cubed.

Vol of perfume =
$$30 \times \frac{3}{2} \times \frac{3}{2} \times \frac{3}{2} = 101.25$$
 mls

10.

Let OB (radius) = r

EB = 3 metres (symmetry – half width of shelter)

OD = r metres (also the radius)

Hence, OE = r - 2 metres

By Pythagoras,
$$r^2 = (r-2)^2 + 3^2$$

 $r^2 = (r-2)(r-2) + 9$
 $r^2 = r^2 - 4r + 4 + 9$
 $4r = 13$
 $r = 3.25$ metres

11. This question was disallowed in the examination because of the inconsistency of units – kph and miles.

However the following solution is offered, making the assumption that units are miles and mph.

a) Time =
Distance ÷ Speed = $\frac{x}{75}$

b) Average Speed = Total Distance ÷ Total Time

Average Speed =
$$2x \div \left(\frac{x}{75} + \frac{x}{50}\right)$$

Average Speed =
$$2x \div \left(\frac{2x}{150} + \frac{3x}{150}\right)$$

Distance

Time taken

$$\rightarrow 2x \div \left(\frac{5x}{150}\right) \rightarrow 2\cancel{x} \times \frac{\cancel{150}^{30}}{\cancel{5}^{1}\cancel{x}}$$

$$= 60 \text{ mph.}$$