2011 Mathematics

Intermediate 2 - Units 1, 2 and 3 Paper 1

Finalised Marking Instructions

© Scottish Qualifications Authority 2011
The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Delivery: Exam Operations Team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Delivery: Exam Operations Team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Question No	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each •
1 (a)	Ans: (i) $\mathbf{Q}_{2}=6.5$ (ii) $Q_{1}=5$ (iii) $Q_{3}=9$ - ${ }^{1}$ process: calculate the median $\bullet^{2} \quad$ process: calculate the lower quartile - ${ }^{3}$ process: calculate the upper quartile	- $\mathrm{Q}_{2}=6.5$ - ${ }^{2} \mathrm{Q}_{1}=5$ - ${ }^{3} \mathrm{Q}_{3}=9$ 3 marks
NOTES: 1. An incorrect answer for the median must be followed through with the possibility of awarding $2 / 3$.		
(b)	- communicate: correct endpoints -2 communicate: correct box	- ${ }^{1} \quad$ endpoints at 0 and 15 - ${ }^{2} \quad$ box showing Q_{1}, Q_{2}, Q_{3} 2 marks

NOTES:

1. The boxplot must be drawn to a reasonable scale.
(c)

Ans: The trains are not as late as the buses or the trains are more reliable.

- communicate: make a valid comment
- ${ }^{1}$ a valid comment

1 mark

NOTES:

1. For a statement which is factually incorrect, award $0 / 1$.
eg The bus took longer than the train (refers to speed not lateness).
The train was late less often than the bus (refers to number of times late rather than number of minutes late).
2. A valid statement must mention train(s) and/or bus(es).
3. Where two contradictory statements are made, award $0 / 1$.

Question No	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each •
2	Ans: $\quad 6 x^{2}-12 x-14$ - ${ }^{1}$ process: start to multiply out brackets - ${ }^{2}$ process: complete the process of multiplying out brackets -3 process: collect like terms which must include a term in x^{2}	- ${ }^{1}$ evidence of 2 correct terms (eg $\left.6 x^{2}+4 x\right)$ - $\quad 6 x^{2}-21 x+4 x-14$ - ${ }^{3} \quad 6 x^{2}-12 x-14$
NOTES:		
3	Ans: $\mathbf{1 3 8}^{\circ}$ - ${ }^{1}$ process: calculate size of angle BEP \bullet^{2} process: calculate size of angle EPC or angle EPB \bullet^{3} process: calculate size of angle EPR	- ${ }^{1} \quad 90^{\circ}$ - ${ }^{2} 42^{\circ}$ or 48° - ${ }^{3} \quad 138^{\circ}$ 3 marks
NOTES:		
1. For a correct answer without working award $0 / 3$		
3. Before awarding the second mark, markers must be clear that the 42° and 48° refer to angles EPC and EPB respectively.		
4. For the final mark to be awarded the size of angle EPR must be stated explicitly.		

$\begin{gathered} \text { Question } \\ \text { No } \\ \hline \end{gathered}$	Marking Scheme Give 1 mark for each -	Illustrations of evidence for awarding a mark at each •
4	Ans: $3 \sqrt{8}$ with evidence - ${ }^{1}$ process: manipulate one of the four terms - ${ }^{2}$ process/communicate: manipulate a different term and state conclusion	- ${ }^{1}$ evidence (see NOTE 1) - $23 \sqrt{8}$ with evidence

NOTES:

1. The first mark may be awarded for one of the following:

$$
\begin{aligned}
& 2 \sqrt{6}=\sqrt{4} \times \sqrt{6}=\sqrt{24} \\
& \sqrt{2} \times \sqrt{12}=\sqrt{24} \\
& \sqrt{2} \times \sqrt{12}=\sqrt{2} \times \sqrt{4 \times 3}=2 \sqrt{6} \\
& 3 \sqrt{8}=\sqrt{9} \times \sqrt{8}=\sqrt{72} \\
& 3 \sqrt{8}=3 \sqrt{4 \times 2}=6 \sqrt{2} \\
& \sqrt{24}=\sqrt{2} \times \sqrt{12} \\
& \sqrt{24}=\sqrt{4 \times 6}=2 \sqrt{6}
\end{aligned}
$$

2. For an answer of " $3 \sqrt{8}$ because the other three are equal", without working, award $0 / 2$

5	Ans: Proof - 1 strategy: know to use cosine rule - ${ }^{2}$ process: substitute correctly into formula - ${ }^{3}$ process: complete proof	- ${ }^{1}$ evidence - $\quad \cos \mathrm{B}=\frac{6^{2}+3^{2}-5^{2}}{2 \times 6 \times 3}$ - ${ }^{3} \cos \mathrm{~B}=\frac{5}{9}$	
			3 marks

NOTES:

1. The third mark can only be awarded if it has been shown that $\cos \mathrm{B}=\frac{20}{36}$.

NOTES:

1. Accept $y=5 \cos 4 x^{\circ}$
2. For $a=4, b=5$
award $1 / 2$

NOTES:

Question No	Marking Scheme Give 1 mark for each -	Illustrations of evidence for awarding a mark at each •
9 (a)	Ans: $(x-7)(x+3)$ - ${ }^{1}$ process: factorise trinomial expression - ${ }^{2}$ process: complete factorisation	- ${ }^{1}$ one correct factor - ${ }^{2} \quad$ second correct factor $2 \text { marks }$
NOTES: 1. For the following answers award $1 / 2$: $\begin{aligned} & (x+7)(x-3) \\ & (x+21)(x-1) \\ & (x-21)(x+1) \end{aligned}$		
(b)	Ans: 7,-3 - ${ }^{1}$ communicate: state roots of equation	- ${ }^{1} \quad 7,-3$ 1 mark
NOTES: 1. Where a candidate uses the quadratic formula, this mark is not available.		
(c)	Ans: (2, -25) - ${ }^{1} \quad$ strategy: find x-coordinate of turning point - ${ }^{2}$ process: replace $x=2$ into $y=x^{2}-4 x-21$ -3 process: complete coordinates of turning point	-1 $\quad x=2$ - ${ }^{2} \quad y=2^{2}-4 \times 2-21$ - ${ }^{3}(2,-25)$
NOTES: 1. Incorrect roots in part (b) must be followed through to give the possibility of awarding full credit in part (c). 2. Where the x coordinate of the turning point has been calculated incorrectly, the second and third marks are still available only where full working has been shown eg for an answer of $(4,-21)$, without working, award $0 / 3$.		

Question No	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each \bullet	
10	Ans: $\frac{\mathbf{4}}{\mathbf{5}}$		
	\bullet^{1} communicate: state value of $\cos a^{\circ}$	\bullet^{1}	$\frac{\mathbf{4}}{\mathbf{5}}$
NOTES:			

TOTAL MARKS FOR PAPER 1

 30[END OF MARKING INSTRUCTIONS]

2011 Mathematics

Intermediate 2 - Units 1, 2 and 3 Paper 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2011
The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Delivery: Exam Operations Team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Delivery: Exam Operations Team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Mathematics Intermediate 2: Paper 2, Units 1, 2 and 3

Question No	Marking Scheme Give 1 mark for each •	Illustratio	of eviden mark at	award
1.	Ans: -9/10 - ${ }^{1}$ process: calculate gradient	$\bullet \quad-9 / 10 \times 1$ mark		
NOTES:				
2.	Ans: £147 900 - ${ }^{1}$ strategy: know how to increase by 3.15% - ${ }^{2}$ strategy: know how to calculate expected value - ${ }^{3}$ process: carry out all calculations correctly within a valid strategy - ${ }^{4}$ process: round answer to 4 significant figures	- ${ }^{1} \quad \times 1.03$ - ${ }^{2} \quad 1347$ - ${ }^{3} \quad 1478$ - ${ }^{4} \quad 1479$	$\times 1.0315^{3}$ 2038	4 mar
NOTES:				
1. For an answer of $£ 147900$, with or without working		$(\checkmark \checkmark \checkmark \checkmark)$ award 4/4		
2. For an answer of $£ 147900 \cdot 00$, with or without working			$(\checkmark \checkmark \checkmark x)$ award 3/4	
3. For an answer of $£ 147889 \cdot 2$, with or without working			$(\checkmark \checkmark \checkmark x)$ award 3/4	
4. Where an incorrect percentage has been used, the working must be followed through to give the possibility of awarding $3 / 4$ eg for an answer of $£ 122400\left(134750 \times 0 \cdot 9685^{3}\right)$, with working $\quad(\boldsymbol{X} \checkmark \checkmark \checkmark)$ award 3/4				
5. For an answer of $£ 417000(134750 \times 1.0315 \times 3)$, with working			$(\checkmark \times \times \checkmark)$ award $2 / 4$	
6. For an answer of $£ 147500(134750+3 \times 0.0315 \times 134750)$, with working			$(\checkmark \times \times \checkmark)$ award 2/4	
7. For an answer of $£ 12730(134750 \times 0.0315 \times 3)$, with working			$(\boldsymbol{x} \times \times \checkmark)$ award $1 / 4$	

Question No	Marking Scheme Give $\mathbf{1}$ mark for each •	Illustrations of evidence for awarding a mark at each \bullet	
3.	Ans: $\boldsymbol{r}=\sqrt{\frac{\boldsymbol{A}}{4 \pi}}$		
	$\bullet^{1} \quad$ process: start to rearrange formula	\bullet^{1}	$r^{2}=\frac{A}{4 \pi}$
	$\bullet^{2} \quad$ process: make r the subject	$\bullet^{2} \quad r=\sqrt{\frac{A}{4 \pi}}$	$\mathbf{2 ~ m a r k s}$

NOTES:

1. For a correct answer without working award $2 / 2$
2. The second mark is available for taking the square root of an expression for r^{2}
3. For an answer of $r=\frac{\sqrt{A}}{4 \pi}$, with or without working, award $1 / 2$
4. For answers such as
$r=\sqrt{\frac{\frac{A}{4}}{\pi}}$
$r=\sqrt{\frac{A \div 4}{\pi}}$
$r=\sqrt{A \div 4 \div \pi}$
award 1/2

$\begin{array}{\|c\|} \hline \text { Question } \\ \text { No } \\ \hline \end{array}$	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each -
4. (a)	Ans: 106 cubic metres - ${ }^{1}$ process: substitute correctly into volume formula for cylinder - ${ }^{2}$ process: calculate volume of cylinder	- $\quad \pi \times 1 \cdot 5^{2} \times 15$ - ${ }^{2} \quad 106\left(\mathrm{~m}^{3}\right)$ 2 marks
NOTES:	Accept variations in volume due to variations in the	value of π
(b)	Ans: $\mathbf{1 7 . 4}$ metres - ${ }^{1}$ strategy: know how to find expression for volume of cone - ${ }^{2}$ strategy: know to equate volume of cone with 5.7 - ${ }^{3}$ process: calculate total height of The Pencil	- ${ }^{1} \quad \frac{1}{3} \times \pi \times 1 \cdot 5^{2} \times h$ - ${ }^{2} \quad \frac{1}{3} \times \pi \times 1.5^{2} \times h=5.7$ $\bullet^{3} \quad 17.4(\mathrm{~m})$
NOTES:		

Question No	Marking Scheme Give 1 mark for each -	Illustrations of evidence for awarding a mark at each •
5.	Ans: 25.1 square centimetres - ${ }^{1}$ strategy: know to express sector as fraction of circle - ${ }^{2}$ strategy: know how to find area of sector -3 process: correctly calculate area of sector	- $\quad \frac{54}{360}$ - ${ }^{2} \quad \frac{54}{360} \times \pi \times 7.3^{2}$ - ${ }^{3} \quad 25 \cdot 1(\mathrm{sq} \mathrm{cm})$ 3 marks
NOTES:		
1. Ac 2. Fo 3. For	cept variations in π, disregard premature or incor $\frac{54}{360} \times \pi \times 2 \times 7.3 \text { leading to } 6.9$ the award of the final mark, calculations must in	ct rounding of $\frac{54}{360}$ $(\checkmark \times \checkmark)$ award $2 / 3$ lve a fraction and π

$\begin{aligned} & \text { Question } \\ & \text { No } \end{aligned}$	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each •
7. (a)	Ans: $24 x+6 y=60$ - ${ }^{1}$ interpret: interpret the text	-1 $24 x+6 y=60 \quad 1$ mark
(b)	Ans: $20 x+10 y=40$ - ${ }^{1}$ interpret: interpret the text	-120x+10y=40 1 mark
(c)	Ans: 25 points - ${ }^{1}$ strategy: know to solve system of equations \bullet^{2} process: follow a valid strategy through to produce a value for x and y - ${ }^{3}$ process: correct value for x and y - ${ }^{4}$ process: calculate $17 x+13 y$	- ${ }^{1} \quad$ evidence of scaling - \quad a value for x and y - ${ }^{3} \quad x=3, y=-2$ - ${ }^{4} \quad 25$ 4 marks
NOTES:		
1. Incorrect equations in parts (a) and/or (b) must be followed through to give the possibility of awarding 4/4.		
2. Any valid strategy must involve the use of two equations.		
3. Where a candidate writes $24 x-6 y=60$ for part (a), $20 x-10 y=40$ for part (b), leading to $x=3, y=2$ and a final answer of $25, \quad$ award $0 / 1$ for part (a) award $1 / 1$ for part (b) award 4/4 for part (c).		
4. Where the correct values for x and y have been obtained without using simultaneous equations, marks are available only if both values have been substituted correctly into both equations$\text { ie } \begin{aligned} & 24 \times 3+6 \times(-2)=60 \\ & 20 \times 3+10 \times(-2)=40 \\ & \text { leading to } x=3, y=-2 \\ & 17 x+13 y=25 \end{aligned}$		
5. Fo	a correct answer, without working	award 0/4

$\begin{aligned} & \text { Question } \\ & \text { No } \end{aligned}$	Marking Scheme Give 1 mark for each e	Illustrations of evidence for awarding a mark at each -
8.	Ans: $\frac{3}{x-5}$ - ${ }^{1}$ process: factorise numerator \bullet^{2} process: simplify expression correctly	- ${ }^{1} 3(x-5)$ -2 $\frac{3}{x-5}$ 2 marks
NOTES: 1. For a correct answer without working, award $2 / 2$		
9.	Ans: $\frac{3-x}{x(x+1)}$ - ${ }^{1}$ process: state a valid common denominator - ${ }^{2}$ process: find correct numerator of equivalent fraction - process: state answer in simplest form	-1 any valid denominator - ${ }^{2}$ both numerators correct - $\frac{3-x}{x(x+1)}$
NOTES: 1. In this question working subsequent to a correct answer should be ignored. 2. For $\frac{3(x+1)-4 x}{x(x+1)}=\frac{3-x}{x^{2}+1}$ award $3 / 3(\checkmark \checkmark \checkmark)$ 3. For $\frac{3(x+1)-4 x}{x^{2}+1}=\frac{3-x}{x^{2}+1}$ award $2 / 3(\boldsymbol{X} \checkmark \checkmark)$		
10.	Ans: $x=76$ and $x=256$ - ${ }^{1}$ process: solve equation for $\tan x^{0}$ - ${ }^{2}$ process: find one value for x - ${ }^{3}$ process: find second value for x	- $\tan ^{1} x^{\circ}=4$ or equivalent - ${ }^{2} \quad 76$ - 3256
NOTES: 1. Where $\tan x^{\circ}$ is calculated incorrectly, the working must be followed through with the possibility of awarding $2 / 3$		

$\begin{aligned} & \text { Question } \\ & \text { No } \end{aligned}$	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each -
11.	Ans: 0.2, 1.6 - ${ }^{1}$ strategy: know to use quadratic formula - ${ }^{2}$ process: correct substitution in formula -3 process: calculate $b^{2}-4 a c$ correctly - ${ }^{4}$ process: state both values of x correct to one decimal place	- ${ }^{1}$ evidence -2 $\frac{7 \pm \sqrt{(-7)^{2}-4 \times 4 \times 1}}{2 \times 4}$ $\cdot 33$ - ${ }^{4} \quad 0 \cdot 2,1 \cdot 6$

NOTES:

1. Where $b^{2}-4 a c$ is calculated incorrectly, the fourth mark is available only if $b^{2}-4 a c>0$.
2. For a correct answer without working award 0/4.

12.	Ans: 21 centimetres - process: state the size of $\angle \mathrm{BOD}$ and recognise isosceles triangle -2 process: state the size of $\angle \mathrm{ADC}$ - ${ }^{3}$ strategy: know to use the cosine rule in triangle ADC - process: substitute correctly in cosine rule -5 process: calculate AC	- ${ }^{1} 82^{\circ}$ plus evidence of isos. triangle - ${ }^{2} \quad 131^{\circ}$ -3 evidence - $d^{2}=9^{2}+14^{2}-$ $2 \times 9 \times 14 \times \cos 131^{\circ}$ -5 $\quad 21(\mathrm{~cm})$
		5 marks

NOTES:

1. Angle BOD may not be explicitly stated, it may be marked in a diagram and, when evidence of the isosceles triangle is also present, can be awarded the first mark.
2. Angle ADC may not be explicitly stated. It may be marked in a diagram and can be awarded the second mark.
3. Disregard errors due to premature rounding.

$\begin{aligned} & \text { Question } \\ & \text { No } \end{aligned}$	Marking Scheme Give 1 mark for each -	Illustrations of evidence for awarding a mark at each •
13.	Ans: $\mathbf{2 5 . 1}$ millimetres - ${ }^{1}$ strategy: marshall facts and recognise right-angle - ${ }^{2}$ strategy: use Pythagoras Theorem or equivalent - ${ }^{3}$ process: calculate third side correctly - process: state height	- ${ }^{2} \quad x^{2}=110^{2}-70^{2}$ - 34.9 - $\quad 25 \cdot 1$ (mm)

NOTES:

1. The final mark is for subtracting a calculated value from the radius.
2. Some common answers (with working):
$\sqrt{110^{2}+70^{2}}=130 \cdot 4 \quad$ award $2 / 4$
$110-\sqrt{140^{2}-110^{2}}=23 \cdot 4 \quad$ award $2 / 4$
3. Where a candidate assumes an angle of 45° in the right-angled triangle, only the first and fourth marks are available.

$\begin{aligned} & \text { Question } \\ & \text { No } \end{aligned}$ No	Marking Scheme Give 1 mark for each •	Illustrations of evidence for awarding a mark at each -
14.	Ans: Complete proof - ${ }^{1}$ strategy: know to replace $1-\sin ^{2} A$ by $\cos ^{2} A$ -2 strategy: know to use $\frac{\sin A}{\cos A}=\tan A$ to complete proof	- $\frac{\sin ^{2} A}{\cos ^{2} A}$ - ${ }^{2}$ complete proof

NOTES:

1. For $\frac{\sin ^{2} A}{1-\sin ^{2} A}=\tan ^{2} A$
$\frac{\sin ^{2} A}{\cos ^{2} A}=\tan ^{2} A$

$$
\tan ^{2} A=\tan ^{2} A
$$

$$
\text { For } \begin{aligned}
& \frac{\sin ^{2} A}{1-\sin ^{2} A}=\tan ^{2} A \\
& \frac{\sin ^{2} A}{\cos ^{2} A}=\tan ^{2} A
\end{aligned}
$$

TOTAL MARKS FOR PAPER 2

