2014 Mathematics

Intermediate 2 Units 1, 2 and 3 Paper 1 (Non-Calculator)

Finalised Marking Instructions

© Scottish Qualifications Authority 2014
The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Part One: General Marking Principles for Mathematics Intermediate 2 Units 1, 2 and 3 Paper 1 (Non-calculator)

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.

1. Marks must be assigned in accordance with the Marking Instructions. The main principle in marking scripts is to give credit for the skills demonstrated and the criteria met. Failure to have the correct method may not preclude a candidate gaining credit for the calculations involved or for the communication of the answer.
2. The answer to one part of a question, even if incorrect, must be accepted as a basis for subsequent dependent parts of the question. Full marks in the dependent part(s) may be awarded provided the question is not simplified.
3. The following should not be penalised:

- working subsequent to a correct answer (unless it provides firm evidence that the requirements of the question have not been met)
- omission or misuse of units (unless marks have been specifically allocated for the purpose in the marking scheme)
- bad form, eg $\sin x^{\circ}=0.5=30^{\circ}$
- legitimate variation in numerical values/algebraic expressions

4. Solutions which seem unlikely to include anything of relevance must nevertheless be followed through. Candidates still have the opportunity of gaining one mark or more provided the solution satisfies the criteria for the mark(s).
5. Full credit should only be given where the solution contains appropriate working. Where the correct answer may be obtained by inspection or mentally, credit may be given, but reference to this will be made in the Marking Instructions.
6. In general markers will only be able to give credit for answers if working is shown. A wrong answer without working receives no credit unless specifically mentioned in the Marking Instructions. The rubric on the outside of the question papers emphasises that working must be shown.
7. Sometimes the method to be used in a particular question is explicitly stated; no credit should be given where a candidate obtains the correct answer by an alternative method.
8. Where the method to be used in a particular question is not explicitly stated, full credit must be given for alternative methods which produce the correct answer.
9. Do not penalise the same error twice in the same question.
10. A transcription error is taken to be the case where the candidate transcribes incorrectly from the examination paper to the answer book. This is not normally penalised except where the question has been simplified as a result.
11. Do not penalise inadvertent use of radians in trigonometry questions, provided their use is consistent within the question.
12. When multiple solutions are presented by the candidate and it is not clear which is intended to be the final one, mark all attempts and award the lowest mark.

Practical Details

The Marking Instructions should be regarded as a working document and have been developed and expanded on the basis of candidates' responses to a particular paper. While the guiding principles of assessment remain constant, details can change depending on the content of a particular examination paper in a given year.

1. Each mark awarded in a question is referenced to one criterion in the marking scheme by means of a bullet point.

2 Where a candidate has scored zero marks for any question attempted, "0" should be shown against the answer in the place in the margin.

3 Where a marker wishes to indicate how the marks have been awarded, the following should be used:
(a) Correct working should be ticked, \checkmark.
(b) Where working subsequent to an error is followed through and can be awarded marks, it should be marked with a crossed tick, \ltimes.
(c) Each error should be underlined at the point in the working where it first occurs.

4 Do not write any comments, words or acronyms on the scripts.

Part Two: Mathematics Intermediate 2: Paper 1, Units 1, 2 and 3 (Non-calculator)

Question		Marking Scheme Give 1 mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •
4.	(a)	Ans: (i) $0 \cdot 5^{\circ} \mathrm{C}$ (ii) $-3^{\circ} \mathrm{C}$ (iii) $2^{\circ} \mathrm{C}$ - ${ }^{1}$ communicate: state median - ${ }^{2}$ communicate: state lower quartile - ${ }^{3}$ communicate: state upper quartile	3	$\begin{array}{ll} \bullet & 0 \cdot 5 \\ \bullet & -3 \\ \bullet & 2 \end{array}$

Notes:

1. An incorrect answer for the median must be followed through with the possibility of awarding $2 / 3$

4	(b)	Ans: - ${ }^{1}$ communicate: correct endpoints \bullet^{2} communicate: correct box	2	- ${ }^{1}$ endpoints at -6 and 8 ${ }^{2}$ box showing $\mathrm{Q}_{2}, \mathrm{Q}_{1}$ and Q_{3}

Notes:

1. The boxplot must be drawn to a reasonable scale.

4	(c)	Ans: (In general) the temperatures were higher in 2014 and temperatures in 2014 were less varied.	2				
$\bullet \bullet^{1}$ communicate: one valid statement							
$\bullet 2$ communicate: second valid statement					\quad		
:---	:---						
$\bullet \bullet^{1}$ valid statement							

Notes:

1. Do not accept:

"The median/mean/average was higher in 2014"
"There was a smaller range of temperature in 2014"
"The first boxplot was more spread out"

	Marking Scheme Give 1 mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •
5.	Ans: $9 \sqrt{10}$ - ${ }^{1}$ process: simplify $\sqrt{40}$ - ${ }^{2}$ process: simplify $\sqrt{90}$ - ${ }^{3}$ process: state answer in simplest form	3	- ${ }^{1} 2 \sqrt{10}$ - $23 \sqrt{10}$ - ${ }^{3} 9 \sqrt{10}$
Notes: 1. For a correct answer without working 2. For subsequent incorrect working, the final mark is not available.			
6.	Ans: $a=5$ - ${ }^{1}$ strategy: know to substitute $(-3,45)$ into $y=a x^{2}$ ${ }^{2}$ process: solve equation for a	2	${ }^{1} 45=a(-3)^{2}$ $\bullet^{2} a=5$
Notes: 1. For a correct answer without working			
7.	Ans: $a=3, b=1$ - ${ }^{1}$ communicate: state value of a - ${ }^{2}$ communicate: state value of b	2	- ${ }^{1} a=3$ - $^{2} b=1$
Notes:			

Question		Marking Scheme Give 1 mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •
8.	(a)	Ans: (2, -5) - ${ }^{1}$ process: state first coordinate of TP \bullet^{2} process: state second coordinate of TP	2	$\begin{aligned} & \bullet^{1}(2, \ldots) \\ & \bullet \bullet^{2}(\ldots,-5) \end{aligned}$
Notes:				
8.	(b)	Ans: Minimum turning point ${ }^{1}$ process: state nature of turning point	1	- ${ }^{1}$ minimum
9.		Ans: 18 centimetres ${ }^{1}{ }^{1}$ strategy: marshall facts and recognise right angle - 2 strategy: know how to use Pythagoras \bullet^{3} process: correct calculation of PA^{2} ${ }^{4}$ process: find length of PQ	4	\bullet - ${ }^{2} 15^{2}-12^{2}\left(=\mathrm{PA}^{2}\right)$ - ${ }^{3} 81$ - ${ }^{4} 18$

TOTAL MARKS FOR PAPER 1
30
[END OF MARKING INSTRUCTIONS]

2014 Mathematics

Intermediate 2 Units 1, 2 and Applications Paper 1 (Non-calculator)

Finalised Marking Instructions

Scottish Qualifications Authority 2014The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Part One: General Marking Principles for: Mathematics Intermediate 2 Units 1, 2 and Applications Paper 1 (Non-calculator)

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.

1. Marks must be assigned in accordance with the Marking Instructions. The main principle in marking scripts is to give credit for the skills demonstrated and the criteria met. Failure to have the correct method may not preclude a candidate gaining credit for the calculations involved or for the communication of the answer.
2. The answer to one part of a question, even if incorrect, must be accepted as a basis for subsequent dependent parts of the question. Full marks in the dependent part(s) may be awarded provided the question is not simplified.
3. The following should not be penalised:

- working subsequent to a correct answer (unless it provides firm evidence that the requirements of the question have not been met)
- omission or misuse of units (unless marks have been specifically allocated for the purpose in the marking scheme)
- bad form, eg $\sin x^{\circ}=0.5=30^{\circ}$
- legitimate variation in numerical values/algebraic expressions

4. Solutions which seem unlikely to include anything of relevance must nevertheless be followed through. Candidates still have the opportunity of gaining one mark or more provided the solution satisfies the criteria for the mark(s).
5. Full credit should only be given where the solution contains appropriate working. Where the correct answer may be obtained by inspection or mentally, credit may be given, but reference to this will be made in the Marking Instructions.
6. In general markers will only be able to give credit for answers if working is shown. A wrong answer without working receives no credit unless specifically mentioned in the Marking Instructions. The rubric on the outside of the question papers emphasises that working must be shown.
7. Sometimes the method to be used in a particular question is explicitly stated; no credit should be given where a candidate obtains the correct answer by an alternative method.
8. Where the method to be used in a particular question is not explicitly stated, full credit must be given for alternative methods which produce the correct answer.
9. Do not penalise the same error twice in the same question.
10. A transcription error is taken to be the case where the candidate transcribes incorrectly from the examination paper to the answer book. This is not normally penalised except where the question has been simplified as a result.
11. Do not penalise inadvertent use of radians in trigonometry questions, provided their use is consistent within the question.
12. When multiple solutions are presented by the candidate and it is not clear which is intended to be the final one, mark all attempts and award the lowest mark.

Practical Details

The Marking Instructions should be regarded as a working document and have been developed and expanded on the basis of candidates' responses to a particular paper. While the guiding principles of assessment remain constant, details can change depending on the content of a particular examination paper in a given year.

1. Each mark awarded in a question is referenced to one criterion in the marking scheme by means of a bullet point.

2 Where a candidate has scored zero marks for any question attempted, "0" should be shown against the answer in the place in the margin.

3 Where a marker wishes to indicate how the marks have been awarded, the following should be used:
(a) Correct working should be ticked, \checkmark.
(b) Where working subsequent to an error is followed through and can be awarded marks, it should be marked with a crossed tick \downarrow.
(c) Each error should be underlined at the point in the working where it first occurs.

4 Do not write any comments, words or acronyms on the scripts.

Part Two:

Mathematics Intermediate 2: Paper 1, Units 1, 2 and Applications Paper 1 (Non-calculator)

Notes:

1. For a correct answer without working
2. For $y=\frac{3}{4} x$
3. Where m and/or c are incorrect the working must be
followed through to give the possibility of awarding $1 / 3$ or $2 / 3$
4. If the equation is stated incorrectly and there is no working, $1 / 3$ can be awarded for correct gradient or correct y-intercept
5. For an incorrect equation (ie both m and c are incorrect), without working eg

$$
y=3 x+\frac{3}{4}
$$

award 0/3

	tion	Marking Scheme Give 1 mark for each -	Max Mark	Illustrations of evidence for awarding a mark at each •
2.		Ans: $3 x^{2}-5 x-10$ - ${ }^{1}$ process: start to multiply out brackets -2 process: complete process of multiplying out brackets ${ }^{3}$ process: collect like terms which must include x^{2} term	3	- ${ }^{1}$ evidence of 2 correct terms (eg $3 x^{2}-15 x$) - ${ }^{2} 3 x^{2}-15 x+2 x-10$ - $3 x^{2}-5 x-10$
Notes: 1. The 3rd mark can only be awarded for a calculation involving positive and negative terms, eg for $3 x^{2}-15 x-10+8 x$ leading to $3 x^{2}-7 x-10$, award $2 / 3$ for $3 x^{2}+2 x-10+8 x$ leading to $3 x^{2}+10 x-10$,				
3.	(a)	Ans: E or \mathbf{F} ${ }^{1}{ }^{1}$ process: state odd node	1	- ${ }^{1}$ either E or F
3.	(b)	Ans: 9 ${ }^{1}$ process: state number of arcs	1	$\bullet^{1} 9$
4.		Ans: A - ${ }^{1}$ process: state correct answer	1	${ }^{1} \mathrm{~A}$ or $=\operatorname{SUM}(\mathrm{B} 3: \mathrm{F} 3)$

Question		Marking Scheme Give 1 mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •
5.	(a)	Ans: (i) $0 \cdot 5^{\circ} \mathrm{C}$ (ii) $-3^{\circ} \mathrm{C}$ (iii) $2^{\circ} \mathrm{C}$ - ${ }^{1}$ communicate: state median -2 communicate: state lower quartile - 3 communicate: state upper quartile	3	$\begin{aligned} & \bullet \bullet^{1} 0 \cdot 5 \\ & \bullet \bullet^{2} \end{aligned}-3$

Notes:

1. An incorrect answer for the median must be followed through with the possibility of awarding $2 / 3$

5.	(b)	Ans: - ${ }^{1}$ communicate: correct endpoints -2 communicate: correct box	2	- ${ }^{1}$ endpoints at -6 and 8 - ${ }^{2}$ box showing $\mathrm{Q}_{2}, \mathrm{Q}_{1}$ and Q_{3}

Notes:

1. The boxplot must be drawn to a reasonable scale.

5.	(c)	Ans: (In general) the temperatures were higher in 2014 and temperatures in 2014 were less varied.	2				
\bullet •1 communicate: one valid statement							
$\bullet 2$ communicate: second valid statement					\quad		
:---	:---						
\bullet^{1} valid statement							

Notes:

1. Do not accept:

"The median/mean/average was higher in 2014"
"There was a smaller range of temperature in 2014"
"The first boxplot was more spread out"

	Marking Scheme Give 1 mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •
6.	Ans: $£ 42.73$ - ${ }^{1}$ interpret: minimum payment - ${ }^{2}$ process: find minimum payment	2	- ${ }^{1} 5 \%$ of $854 \cdot 60$ - $242 \cdot 73$
Notes: 1. For $£ 42 \cdot 73$, with or without working,			
7.	Ans: $\sqrt{60}$ centimetres - ${ }^{1}$ process: substitute correctly into cosine rule - ${ }^{2}$ process: start to evaluate cosine rule - ${ }^{3}$ process: calculate PR correctly	3	- ${ }^{1} q^{2}=7^{2}+5^{2}-2 \times 7 \times 5 \times \frac{1}{5}$ - ${ }^{2}$ any 2 correct terms from $49+25-14$ - ${ }^{3} \sqrt{60}$
Notes: 1. For $q^{2}=7^{2}+5^{2}-2 \times 7 \times 5 \times \cos \frac{1}{5}$ leading to an answer of $\sqrt{60} \quad$ award $2 / 3 \quad \times \checkmark \checkmark$ 2. For use of Pythagoras’ Theorem leading to $\sqrt{74} \quad$ award $0 / 3$			
8.	Ans: 31•4 - ${ }^{1}$ process: substitute correctly into formula - ${ }^{2}$ process: carry out calculation correctly	2	${ }^{1} \quad A=3 \cdot 14 \times 5 \times 2$ $\bullet^{2} 31 \cdot 4$

Notes:

1. Where a candidate has answered Q9 in the unlined answer book, all marks are available.

Question		Marking Scheme Give 1 mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •
10.		Ans: 18 centimetres - ${ }^{1}$ strategy: marshall facts and recognise right angle - ${ }^{2}$ strategy: know how to use Pythagoras - ${ }^{3}$ process: correct calculation of PA^{2} - ${ }^{4}$ process: find length of PQ	4	\bullet^{1} $\bullet^{2} 15^{2}-12^{2}\left(\mathrm{PA}^{2}\right)$ $\bullet^{3} 81$ - ${ }^{4} 18$

TOTAL MARKS FOR PAPER 1

30
[END OF MARKING INSTRUCTIONS]

2014 Mathematics

Intermediate 2 Units 1, 2 \& 3 Paper 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2014
The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Part One: General Marking Principles for: Mathematics Intermediate 2 Units 1, 2 \& 3 Paper 2

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.

1. Marks must be assigned in accordance with the Marking Instructions. The main principle in marking scripts is to give credit for the skills demonstrated and the criteria met.
Failure to have the correct method may not preclude a candidate gaining credit for the calculations involved or for the communication of the answer.
2. The answer to one part of a question, even if incorrect, must be accepted as a basis for subsequent dependent parts of the question. Full marks in the dependent part(s) may be awarded provided the question is not simplified.
3. The following should not be penalised:

- working subsequent to a correct answer (unless it provides firm evidence that the requirements of the question have not been met)
- omission or misuse of units (unless marks have been specifically allocated for the purpose in the marking scheme)
- bad form, eg $\sin x^{\circ}=0.5=30^{\circ}$
- legitimate variation in numerical values/algebraic expressions

4. Solutions which seem unlikely to include anything of relevance must nevertheless be followed through. Candidates still have the opportunity of gaining one mark or more provided the solution satisfies the criteria for the mark(s).
5. Full credit should only be given where the solution contains appropriate working. Where the correct answer may be obtained by inspection or mentally, credit may be given, but reference to this will be made in the Marking Instructions.
6. In general markers will only be able to give credit for answers if working is shown. A wrong answer without working receives no credit unless specifically mentioned in the Marking Instructions. The rubric on the outside of the question papers emphasises that working must be shown.
7. Sometimes the method to be used in a particular question is explicitly stated; no credit should be given where a candidate obtains the correct answer by an alternative method.
8. Where the method to be used in a particular question is not explicitly stated, full credit must be given for alternative methods which produce the correct answer.
9. Do not penalise the same error twice in the same question.
10. A transcription error is taken to be the case where the candidate transcribes incorrectly from the examination paper to the answer book. This is not normally penalised except where the question has been simplified as a result.
11. Do not penalise inadvertent use of radians in trigonometry questions, provided their use is consistent within the question.
12. When multiple solutions are presented by the candidate and it is not clear which is intended to be the final one, mark all attempts and award the lowest mark.

Practical Details

The Marking Instructions should be regarded as a working document and have been developed and expanded on the basis of candidates' responses to a particular paper. While the guiding principles of assessment remain constant, details can change depending on the content of a particular examination paper in a given year.

1. Each mark awarded in a question is referenced to one criterion in the marking scheme by means of a bullet point.

2 Where a candidate has scored zero marks for any question attempted, "0" should be shown against the answer in the place in the margin.

3 Where a marker wishes to indicate how the marks have been awarded, the following should be used:
(a) Correct working should be ticked, \checkmark.
(b) Where working subsequent to an error is followed through and can be awarded marks, it should be marked with a crossed tick, \nprec.
(c) Each error should be underlined at the point in the working where it first occurs.

4 Do not write any comments, words or acronyms on the scripts.

Part Two: Mathematics Intermediate 2: Units 1, 2 and 3 Paper 2

	tion	Marking Scheme Give 1 mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •
1.		Ans: 590 - ${ }^{1}$ strategy: know how to decrease by 15% - ${ }^{2}$ strategy: know how to calculate roll - ${ }^{3}$ process: carry out calculations correctly within a valid strategy and round to the nearest ten	3	- ${ }^{1} \times 0.85$ - $^{2} 964 \times 0 \cdot 85^{3}$ - ${ }^{3} 590$
Notes: 1. For an answer of 590 without working award 3/3 $\quad \checkmark \checkmark \checkmark$ 2. For an answer of 592 or $592 \cdot 0165$ without working award $2 / 3 \quad \checkmark \checkmark x$ 3. Where an incorrect percentage has been used, the working must be followed through to give the possibility of awarding $2 / 3$ 4. For an answer of $2460(964 \times 0 \cdot 85 \times 3)$ with working, 5. For an answer of $530(964-964 \times 0 \cdot 15 \times 3)$ with working, award $1 / 3 \quad \checkmark \times x$ 6. For an answer of $430(964 \times 0 \cdot 15 \times 3)$ award $0 / 3 \quad x \times x$				
2.	(a)	Ans: $\mathbf{1 1 8 0} \mathbf{c m}^{\mathbf{3}}$ - ${ }^{1}$ process: substitute correctly - ${ }^{2}$ process: correct calculation ${ }^{3}$ process: round to 3 sig fig	3	- ${ }^{1} V=\pi \times 5^{2} \times 15$ - ${ }^{2} 1178 \cdot 1$ ${ }^{3} 1180 \mathrm{~cm}^{3}$
2.	(b)	Ans: $\mathbf{2 3} \mathbf{c m}$ - ${ }^{1}$ strategy: know how to find expression for volume of a cone - ${ }^{2}$ process: know to equate volumes - ${ }^{3}$ process: calculate height	3	- $1 \frac{1}{3} \times \pi \times 7^{2} \times h$ - $\frac{1}{3} \times \pi \times 7^{2} \times h=1180$ - ${ }^{3} 23 \mathrm{~cm}$

Question		Marking Scheme Give 1 mark for each •		Max Mark	Illustrations awarding a	of evidenc mark at ea
3.		Ans: 3(x+ - ${ }^{1}$ process: ${ }^{2}$ process: ${ }^{3}$ process:	ctoris furthe ion	3	- ${ }^{1} 3\left(x^{2}+3 x\right.$ - ${ }^{2}$ evidence - $^{3} 3(x+4)(x$	-4) (see notes) $x-1)$
Notes:						
1. For the following answers$\begin{aligned} & (3 x+12)(x-1) \\ & (x+4)(3 x-3) \\ & 3(x-4)(x+1) \\ & 3(x-2)(x+2) \end{aligned}$						award $2 / 3$
	For the following answers					award 1/3
	$\begin{array}{ll} 3\left(x^{2}+3 x-4\right) & \\ (3 x-12)(x+1) & (3 x-6)(x+2) \\ (3 x+1)(x-12) & (3 x+6)(x-2) \\ (3 x-1)(x+12) & (3 x+2)(x-6) \\ & (3 x-2)(x+6) \end{array}$				$\begin{aligned} & 3 x+4)(x-3) \\ & 3 x-4)(x+3) \\ & x+3)(x-4) \end{aligned}$	

	stion	Marking Scheme Give 1 mark for each e	$\begin{gathered} \text { Max } \\ \text { Mark } \end{gathered}$	Illustrations of evidence for awarding a mark at each •
4.	(a)	Ans: $3 x+2 y=4.73$ - ${ }^{1}$ interpret: interpret the text	1	${ }^{-1} 3 x+2 y=4 \cdot 73$
4.	(b)	Ans: $5 x+3 y=7 \cdot 52$ - ${ }^{1}$ interpret: interpret the text	1	$\bullet^{1} 5 x+3 y=7 \cdot 52$
4.	(c)	Ans: a loaf costs $£ 0 \cdot 85$, a packet of butter costs $£ 1 \cdot 09$ - ${ }^{1}$ strategy: know to solve system of equations - ${ }^{2}$ process: follow a valid strategy through to produce a value for x and y - ${ }^{3}$ process: correct value for x and y - ${ }^{4}$ communicate: state result	4	- ${ }^{1}$ evidence of scaling - ${ }^{2}$ a value for x and y - $^{3} \quad x=0 \cdot 85, y=1 \cdot 09$ - ${ }^{4}$ a loaf costs $£ 0 \cdot 85$, a packet of butter costs $£ 1 \cdot 09$
		uations in parts (a) and/or (b) must be 4. rategy must involve the use of two eq ark is only available where a valid str	ollowed tions. gy has	hrough to give the possibility of ben used.

Question			Marking Scheme	Max	Illustrations of evidence for
5.	(a)	(i)	Ans: $\bar{x}=56.5$ - ${ }^{1}$ process: calculate the mean	1	- ${ }^{1} \bar{x}=56.5$
5.	(a)	(ii)	Ans: $s=2 \cdot 4$ - ${ }^{1}$ process: calculate $(x-\bar{x})^{2}$ \bullet^{2} process: substitute into formula - ${ }^{3}$ process: calculate standard deviation	3	$\begin{aligned} & \bullet \begin{array}{l} \bullet \\ 0 \cdot 25,0 \cdot 25,2 \cdot 25,2 \cdot 25,12 \cdot 25, \\ \\ \bullet \\ \bullet \sqrt{\frac{29 \cdot 5}{5}} \\ \bullet \\ \bullet 3 \cdot 4(2 \ldots) \end{array} \\ & \hline \end{aligned}$
	s: or us pro pro pro or a	of a ess: ess: ess: rre	ternative formula in part (a)(ii), aw calculate Σx and Σx^{2} substitute into formula calculate standard deviation answer without working	marks a	follows ${ }^{1} \quad 339$ and 19183 -2 $\sqrt{\frac{19183-\frac{339^{2}}{6}}{5}}$ - ${ }^{3} 2 \cdot 4(2 \ldots)$ award 0/3
5.	(b)		Ans: No, standard deviation is greater OR No, times are more spread out ${ }^{1}{ }^{1}$ communicate: no, with valid explanation	1	- ${ }^{1}$ No, because the standard deviation is greater
Notes: 1. Accept "No, as $3 \cdot 2>2 \cdot 4$ " 2. Do not accept "No, times are less consistent" without further explanation.					

	Marking Scheme Give 1 mark for each •	$\begin{gathered} \hline \text { Max } \\ \text { Mark } \end{gathered}$	Illustrations of evidence for awarding a mark at each •
8.	Ans: $4 p^{2}$ - ${ }^{1}$ process: simplify powers in denominator $\bullet{ }^{2}$ process: simplify constants - ${ }^{3}$ process: simplify powers in fraction	3	- ${ }^{1} 2 p^{4}$ - $2 \frac{4 p^{6}}{p^{4}}$ - ${ }^{3} 4 p^{2}$
9.	Ans: $\frac{7 x-20}{x(x-4)}$ - ${ }^{1}$ process: state a valid common denominator -2 process: find correct numerator of equivalent fraction - ${ }^{3}$ process: state answer in simplest form	3	- ${ }^{1}$ any valid common denominator - ${ }^{2}$ both numerators correct -3 $\frac{7 x-20}{x(x-4)}$
Notes: 1. In this question, working subsequent to a correct answer should be ignored. 2. For $\frac{2 x+5(x-4)}{x(x-4)}=\frac{7 x-20}{x^{2}-4}$ award $3 / 3$ For $\frac{2 x+5(x-4)}{x^{2}-4}=\frac{7 x-20}{x^{2}-4}$ award 2/3 $\quad \times \checkmark \checkmark$			

Question		Marking Scheme Give 1 mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •
10.		Ans: because $\frac{25}{20}>1$ - ${ }^{1}$ communicate: state answer with reason	1	$\begin{array}{rlrl} \bullet^{1} & \text { because } & \frac{25}{20} & >1 \\ \text { or } & \frac{25}{20} & >100 \% \\ & \text { or } & \frac{25}{20} & >\frac{20}{20} \end{array}$
Notes: 1.Some common answers: "Because it is a top-heavy fraction" "Because the numerator cannot be higher than the denominator" "Because you can't pick 25 five pences out of 20 coins" For all of the above award $0 / 1$				
11.	(a)	Ans: $84 \cdot 8^{\circ}$ - ${ }^{1}$ process: substitute correctly into cosine rule ${ }^{2}$ process: calculate cosB correctly ${ }^{3}$. process: calculate angle ABC correctly	3	- ${ }^{1} \operatorname{cosB}=\frac{8^{2}+11^{2}-13^{2}}{2 \times 8 \times 11}$ $\bullet^{2} \cos B=0.09 \ldots$ $\bullet^{3} 85^{\circ}$ or $84 \cdot 8 \ldots$
Notes: 1. For $1 \cdot 48$ (uses RAD) or $94 \cdot 3$ (uses GRAD), with working award 3/3 2. The Second mark can be awarded for $\cos ^{-1}\left(\frac{16}{176}\right)$				

	tion	Marking Scheme Give 1 mark for each -	Max Mark	Illustrations of evidence for awarding a mark at each •
11.	(b)	Ans: $155 \cdot 2^{\circ}$ - ${ }^{1}$ strategy: know how to calculate the angle -2 process: correctly calculate the angle within a valid strategy	2	- ${ }^{1}$ (360 - 120 - answer to (a)) or equivalent - $^{2} 155 \cdot 2^{\circ}$
12.		Ans: $74 \cdot 3^{\circ}$ (accept 74°) - ${ }^{1}$ process: substitute correctly - ${ }^{2}$ process: solve equation for $\sin x^{\circ}$ ${ }^{3}$ process: find the value of x	3	${ }^{1}{ }^{1} 320 \sin x^{0}+150=458$ $\bullet^{2} \sin x^{\circ}=308 / 320$ - ${ }^{3} 74$ (accept 74)
Notes: 1. Where a candidate has two answers for x (74 and 106) with working award $2 / 3$ 2. For a correct answer arrived at by trial and improvement, only the first and third marks are available. 3. For a correct answer, without working award 0/3				

Question	Marking Scheme Give 1 mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •
Notes: (continued)			
3. Some common answers (working must be shown):			
$56 \cdot 6$	$\left(\frac{310}{360} \times \pi \times 14+\frac{1}{2} \times 7 \times 7 \times \sin 50^{\circ}\right)$	award 4/5	$\checkmark \checkmark \times \checkmark \checkmark$
$40 \cdot 1$	$\left(\frac{50}{360} \times \pi \times 7^{2}+\frac{1}{2} \times 7 \times 7 \times \sin 50^{\circ}\right)$	award 4/5	$\times \checkmark \checkmark \checkmark \checkmark$
$2 \cdot 6$	$\left(\frac{50}{360} \times \pi \times 7^{2}-\frac{1}{2} \times 7 \times 7 \times \sin 50^{\circ}\right)$	award 4/5	$\times \checkmark \checkmark \checkmark \checkmark$
$24 \cdot 9$	$\left(\frac{50}{360} \times \pi \times 14+\frac{1}{2} \times 7 \times 7 \times \sin 50^{\circ}\right)$	award 3/5	$\times \checkmark \times \checkmark \checkmark$
$132 \cdot 6$	$\left(\frac{310}{360} \times \pi \times 7^{2}\right)$	award 2/5	$\times \checkmark \checkmark \times \times$
21.4	$\left(\frac{50}{360} \times \pi \times 7^{2}\right)$	award 2/5	$\times \checkmark \checkmark \times \times$
18.8	$\left(\frac{1}{2} \times 7 \times 7 \times \sin 50^{\circ}\right)$	award 1/5	$\times \times \times \checkmark \times$
$153 \cdot 9$	$\left(\pi \times 7^{2}\right)$	award $0 / 5$	

4. The fifth mark is only available when the area of triangle MON is calculated using trigonometry.

[END OF MARKING INSTRUCTIONS]

2014 Mathematics

Intermediate 2 Units 1, 2 and Applications Paper 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2014

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Part One: General Marking Principles for: Mathematics Intermediate 2 Units 1, 2 and Applications Paper 2

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.

1. Marks must be assigned in accordance with the Marking Instructions. The main principle in marking scripts is to give credit for the skills demonstrated and the criteria met.
Failure to have the correct method may not preclude a candidate gaining credit for the calculations involved or for the communication of the answer.
2. The answer to one part of a question, even if incorrect, must be accepted as a basis for subsequent dependent parts of the question. Full marks in the dependent part(s) may be awarded provided the question is not simplified.
3. The following should not be penalised:

- working subsequent to a correct answer (unless it provides firm evidence that the requirements of the question have not been met)
- omission or misuse of units (unless marks have been specifically allocated for the purpose in the marking scheme)
- bad form, eg $\sin x^{\circ}=0.5=30^{\circ}$
- legitimate variation in numerical values/algebraic expressions

4. Solutions which seem unlikely to include anything of relevance must nevertheless be followed through. Candidates still have the opportunity of gaining one mark or more provided the solution satisfies the criteria for the mark(s).
5. Full credit should only be given where the solution contains appropriate working. Where the correct answer may be obtained by inspection or mentally, credit may be given, but reference to this will be made in the Marking Instructions.
6. In general markers will only be able to give credit for answers if working is shown. A wrong answer without working receives no credit unless specifically mentioned in the Marking Instructions. The rubric on the outside of the question papers emphasises that working must be shown.
7. Sometimes the method to be used in a particular question is explicitly stated; no credit should be given where a candidate obtains the correct answer by an alternative method.
8. Where the method to be used in a particular question is not explicitly stated, full credit must be given for alternative methods which produce the correct answer.
9. Do not penalise the same error twice in the same question.
10. A transcription error is taken to be the case where the candidate transcribes incorrectly from the examination paper to the answer book. This is not normally penalised except where the question has been simplified as a result.
11. Do not penalise inadvertent use of radians in trigonometry questions, provided their use is consistent within the question.
12. When multiple solutions are presented by the candidate and it is not clear which is intended to be the final one, mark all attempts and award the lowest mark.

Practical Details

The Marking Instructions should be regarded as a working document and have been developed and expanded on the basis of candidates' responses to a particular paper. While the guiding principles of assessment remain constant, details can change depending on the content of a particular examination paper in a given year.

1. Each mark awarded in a question is referenced to one criterion in the marking scheme by means of a bullet point.

2 Where a candidate has scored zero marks for any question attempted, " 0 " should be shown against the answer in the place in the margin.

3 Where a marker wishes to indicate how the marks have been awarded, the following should be used:
(a) Correct working should be ticked, \checkmark.
(b) Where working subsequent to an error is followed through and can be awarded marks, it should be marked with a crossed tick, \searrow.
(c) Each error should be underlined at the point in the working where it first occurs.

4 Do not write any comments, words or acronyms on the scripts.

Part Two: Mathematics Intermediate 2: Units 1, 2 and Applications Paper 2

Question		Marking Scheme Give 1 mark for each	$\begin{gathered} \text { Max } \\ \text { Mark } \end{gathered}$	Illustrations of evidence for awarding a mark at each •
1.		Ans: 590 - ${ }^{1}$ strategy: know how to decrease by 15% - 2 strategy: know how to calculate roll - 3 process: carry out calculations correctly within a valid strategy and round to the nearest ten	3	$\bullet^{1} \times 0 \cdot 85$ $\bullet^{2} \quad 964 \times 0 \cdot 85^{3}$ $\bullet^{3} 590$

Notes:

1. For an answer of 590 without working
2. For an answer of 592 or $59 \cdot 20165$ without working
3. Where an incorrect percentage has been used, the working must be followed through to give the possibility of awarding $2 / 3$
4. For an answer of $2460(964 \times 0 \cdot 85 \times 3)$ with working,
5. For an answer of $530(964-964 \times 0 \cdot 15 \times 3)$ with working,
6. For an answer of $430(964 \times 0 \cdot 15 \times 3)$
award 3/3 $\quad \checkmark \checkmark \checkmark$
award $2 / 3 \quad \checkmark \checkmark x$

2.	(a)	Ans: $\mathbf{1 1 8 0} \mathbf{c m}^{\mathbf{3}}$ - ${ }^{1}$ process: substitute correctly - 2 process: correct calculation - ${ }^{3}$ process: round to 3 sig fig	3	- ${ }^{1} V=\pi \times 5^{2} \times 15$ - ${ }^{2} 1178 \cdot 1$ ${ }^{3}{ }^{3} 1180 \mathrm{~cm}^{3}$
2.	(b)	Ans: $\mathbf{2 3}$ cm - ${ }^{1}$ strategy: know how to find expression for volume of a cone - ${ }^{2}$ process: know to equate volumes - ${ }^{3}$ process: calculate height	3	- ${ }^{1} \frac{1}{3} \times \pi \times 7^{2} \times h$ - ${ }^{2} \frac{1}{3} \times \pi \times 7^{2} \times h=1180$ - ${ }^{3} 23 \mathrm{~cm}$

Question		Marking Sc Give 1 mar		Max Mark	Illustrations of evidence for awarding a mark at each •
3.	3.	Ans: 3($x+$ - ${ }^{1}$ process: - ${ }^{2}$ process: - ${ }^{3}$ process:	factorise further e ation	3	- ${ }^{1} 3\left(x^{2}+3 x-4\right)$ ${ }^{\bullet}{ }^{2}$ evidence (see notes) -3 $3(x+4)(x-1)$
Notes: 1. For the following answers $\begin{aligned} & (3 x+12)(x-1) \\ & (x+4)(3 x-3) \\ & 3(x-4)(x+1) \\ & 3(x-2)(x+2) \end{aligned}$					
2. For the following answers award 1/3					

	stion	Marking Scheme Give 1 mark for each e	$\begin{gathered} \text { Max } \\ \text { Mark } \end{gathered}$	Illustrations of evidence for awarding a mark at each •
4.	(a)	Ans: $3 x+2 y=4.73$ - ${ }^{1}$ interpret: interpret the text	1	${ }^{-1} 3 x+2 y=4 \cdot 73$
4.	(b)	Ans: $5 x+3 y=7 \cdot 52$ - ${ }^{1}$ interpret: interpret the text	1	$\bullet^{1} 5 x+3 y=7 \cdot 52$
4.	(c)	Ans: a loaf costs $£ 0 \cdot 85$, a packet of butter costs $£ 1 \cdot 09$ - ${ }^{1}$ strategy: know to solve system of equations - ${ }^{2}$ process: follow a valid strategy through to produce a value for x and y - ${ }^{3}$ process: correct value for x and y - ${ }^{4}$ communicate: state result	4	- ${ }^{1}$ evidence of scaling - ${ }^{2}$ a value for x and y - $^{3} \quad x=0 \cdot 85, y=1 \cdot 09$ - ${ }^{4}$ a loaf costs $£ 0 \cdot 85$, a packet of butter costs $£ 1 \cdot 09$
		uations in parts (a) and/or (b) must be 4. rategy must involve the use of two eq ark is only available where a valid str	ollowed tions. gy has	hrough to give the possibility of ben used.

	tion	Marking Scheme Give 1 mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •
8.	(a)	Ans: $\mathbf{8 4} \cdot \mathbf{8}^{\circ}$ - ${ }^{1}$ process: substitute correctly into cosine rule $\bullet{ }^{2}$ process: calculate cosB correctly -3 process: calculate angle ABC correctly	3	- ${ }^{1} \operatorname{cosB}=\frac{8^{2}+11^{2}-13^{2}}{2 \times 8 \times 11}$ $\bullet^{2} \cos B=0 \cdot 09 \ldots$ ${ }^{3}{ }^{3} 85^{\circ}$ or $84 \cdot 8 \ldots$
Notes: 1. For 1.48 (uses RAD) or 94.3 (uses GRAD), with working 2. The second mark can be awarded for $\cos ^{-1}\left(\frac{16}{176}\right)$				
8.	(b)	Ans: $\mathbf{1 5 5 . 2}^{\mathbf{0}}$ - ${ }^{1}$ strategy: know how to calculate the angle - ${ }^{2}$ process: correctly calculate the angle within a valid strategy	2	- ${ }^{1}$ (360 - 120 - answer to (a)) or equivalent $\bullet^{2} 155 \cdot 2^{\circ}$
9.		Ans: CENTRAL BANK ${ }^{1}$ strategy: know to add cost to amount borrowed - ${ }^{2}$ strategy: know to divide by 60 - ${ }^{3}$ process: calculate monthly payment correctly and state corresponding interest rate	3	- ${ }^{1} 5000+1702 \cdot 60$ - ${ }^{2}(5000+1702 \cdot 60) \div 60$ - ${ }^{3}$ CENTRAL BANK (from 111•71)
Notes:				
	or the	et answer, without working $\times 60=6702 \cdot 6$, leading to an answer the $2^{\text {nd }}$ and $3^{\text {rd }}$ marks must include	f"Cent	award $0 / 3$ award $3 / 3$

Qu	Marking Scheme Give 1 mark for each -	Max Mark	Illustrations of evidence for awarding a mark at each •
10.	Ans: £9350 - ${ }^{1}$ strategy: know how to calculate Gross pay -2 strategy: know how to calculate commission - ${ }^{3}$ strategy: know how to calculate sales - ${ }^{4}$ process: carry out all calculations correctly	4	- ${ }^{1} 352 \cdot 02+27 \cdot 86+65 \cdot 59+27 \cdot 53$ (472.00) ${ }^{2}$ 2 Gross Pay - $191 \cdot 50$ (280•50) - ${ }^{3}$ Commission $\div 0.03$ - ${ }^{4} 9350$
Notes:			
11.	Ans: £33.05 ${ }^{1}$ process: know to calculate mid-values - ${ }^{2}$ process: know to calculate mid-value $\times f$ ${ }^{3}$. process: know to calculate Σf and $\Sigma f x$ - ${ }^{4}$ process: know how to calculate mean $\bullet{ }^{5}$ process: calculate mean	5	- ${ }^{1} 4 \cdot 5,14 \cdot 5,24 \cdot 5,34 \cdot 5,44 \cdot 5,54 \cdot 5$, $64 \cdot 5,74 \cdot 5$ $\bullet^{2} 90,580,882,1518,578 \cdot 5,1199$, 645, $1117 \cdot 5$ - 3200 and 6610 -4 $\frac{\Sigma f x}{\Sigma f}$ ${ }^{-5} 33 \cdot 05$
Notes: 1. An arithmetic error must be followed through with the possibility of awarding $4 / 5$.			

Question	Marking Scheme Give 1 mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •
Notes: (continued)			
3. Some common answers (working must be shown):			
$56 \cdot 6$	$\left(\frac{310}{360} \times \pi \times 14+\frac{1}{2} \times 7 \times 7 \times \sin 50^{\circ}\right)$	award 4/5	$\checkmark \checkmark \times \checkmark \checkmark$
$40 \cdot 1$	$\left(\frac{50}{360} \times \pi \times 7^{2}+\frac{1}{2} \times 7 \times 7 \times \sin 50^{\circ}\right)$	award 4/5	$\times \checkmark \checkmark \checkmark \checkmark$
$2 \cdot 6$	$\left(\frac{50}{360} \times \pi \times 7^{2}-\frac{1}{2} \times 7 \times 7 \times \sin 50^{\circ}\right)$	award 4/5	$\times \checkmark \checkmark \checkmark \checkmark$
$24 \cdot 9$	$\left(\frac{50}{360} \times \pi \times 14+\frac{1}{2} \times 7 \times 7 \times \sin 50^{\circ}\right)$	award 3/5	$\times \checkmark \times \checkmark \checkmark$
$132 \cdot 6$	$\left(\frac{310}{360} \times \pi \times 7^{2}\right)$	award 2/5	$\times \checkmark \checkmark \times \times$
21.4	$\left(\frac{50}{360} \times \pi \times 7^{2}\right)$	award 2/5	$\times \checkmark \checkmark \times \times$
18.8	$\left(\frac{1}{2} \times 7 \times 7 \times \sin 50^{\circ}\right)$	award 1/5	$\times \times \times \checkmark \times$
$153 \cdot 9$	$\left(\pi \times 7^{2}\right)$	award $0 / 5$	

4. The fifth mark is only available when the area of triangle MON is calculated using trigonometry.

[END OF MARKING INSTRUCTIONS]
