2006 Mathematics

Standard Grade Credit

Finalised Marking Instructions

© The Scottish Qualifications Authority 2006
The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from the Assessment Materials Team, Dalkeith.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's Assessment Materials Team at Dalkeith may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Special Instructions

1 The main principle in marking scripts is to give credit for the skills which have been demonstrated. Failure to have the correct method may not preclude a pupil gaining credit for the calculations involved or for the communication of the answer.

Care should be taken to ensure that the mark for any question or part question is entered in the correct column, as indicated by the horizontal line.

Where a candidate has scored zero marks for any question attempted, " 0 " should be shown against the answer in the appropriate column.

It is of great importance that the utmost care should be exercised in adding up the marks. Where appropriate, all summations for totals and grand totals must be carefully checked.

2 The answer to one part, correct or incorrect must be accepted as a basis for subsequent dependent parts of a question. Full marks in the dependent part is possible if it is of equivalent difficulty.

3 Do not penalise insignificant errors. An insignificant error is one which is significantly below the level of attainment being assessed.
eg An error in the calculation of $16+15$ would not be penalised at Credit Level.

4 Working after a correct answer should only be taken into account if it provides firm evidence that the requirements of the question have not been met.

In certain cases an error will ease subsequent working. Full credit cannot be given for this subsequent work but partial credit may be given.

6 Accept answers arrived at by inspection or mentally, where it is possible for the answer to have been so obtained.

7 Do not penalise omission or misuse of units unless marks have been specifically allocated to units.

8 A wrong answer without working receives no credit unless specifically mentioned in the marking scheme.

The rubric on the outside of the Papers emphasises that working must be shown. In general markers will only be able to give credit to partial answers if working is shown. However there may be a few questions where partially correct answers unsupported by working can still be given some credit. Any such instances will be stated in the marking scheme.

9 Acceptable alternative methods of solution can only be given the marks specified, ie a more sophisticated method cannot be given more marks.

Note that for some questions a method will be specified.

10 In general do not penalise the same error twice in the one question.

11 Accept legitimate variations in numerical/algebraic questions.

12 Do not penalise bad form eg $\sin x^{0}=0 \cdot 5=30^{\circ}$.

13 A transcription error is not normally penalised except where the question has been simplified as a result.

2006 Mathematics SG - Credit Level - Paper 1

Marking Instructions

Award marks in whole numbers only

Question No	Give 1 mark for each	Illustrations of evidence for awarding each mark
$\mathbf{1}$	Ans: $\mathbf{6} \cdot \mathbf{4}$	
	\bullet knowing correct order of operations	\bullet
	\bullet carrying out both calculations	\bullet
		$6 \cdot 4$

Notes:

(i) For an answer of 6.4 without working award $2 / 2$
(ii) For an answer of 2206 without working award 1/2
(iii) For an answer of 50 without working award 1/2
(iv) For any other answer without working award $0 / 2$

Question No	Give 1 mark for each	Illustrations of evidence for awarding each mark
2	Ans: $4 \frac{6}{35}\left(\right.$ or $\left.\frac{146}{35}\right)$ - finding a fraction with a common denominator - carrying out all calculations	- $\frac{41}{35}$ or $\frac{56}{35}$ or $\frac{90}{35}$ - $\frac{146}{35}$ or equivalent
Notes: (i) For an answer of $3 \frac{41}{35}$ award $1 / 2$		

Question No	Give 1 mark for each	Illustrations of evidence for awarding each mark
3	Ans: -5 - substitution - correct evaluation	$4-(-3)^{2}$
	Notes:	2 KU
(i) (ii)	For a correct answer of -5 withou For an answer of 13 without wor	ard $2 / 2$

Question No	Give 1 mark for each	Illustrations of evidence for awarding each mark
4	Ans: $y=\frac{2}{3} x+8$ - gradient - $\quad \mathrm{y}$-intercept - correct equation	$\frac{2}{3}$ (or equivalent) 8 $y=\frac{2}{3} x+8$
Notes:		
(i) (ii)	To gain the third mark, the equation must be consistent with the gradient and the y -intercept calculated.	
(iii) (iv)	For an answer of $y=\frac{2}{3} x$ award $1 / 3$ unless the y-intercept has been explicitly marked as zero in which case award $2 / 3$. An answer of $y=\frac{2}{3} x+c$ cannot be awarded the third mark.	

Question No	Give 1 mark for each	Illustrations of evidence for awarding each mark
5 (a)	Ans: $(2 x-y)(2 x+y)$ - factorising	- $(2 x-y)(2 x+y)$
		1 KU
Notes:		
(b)	Ans: $\frac{2 x-y}{3}$ - factorising denominator - consistent simplification	- $3(2 x+y)$ - $\frac{2 x-y}{3}$
		2 KU
Notes: (i) The second mark can be awarded only if simplification is consistent with part (a).		

Question No	Give 1 mark for each	Illustrations of evidence for awarding each mark
6	Ans: -10 - expanding brackets - collecting terms - consistent solution	$-2 x-2$ $-x=10$ $x=-10$
		3 KU
Notes: (i) (ii)	The second mark cannot be awar The third mark can be awarded on coefficient of x.	lection of terms involves only constants. didate has correctly dealt with a negative

$\begin{aligned} & \text { Question } \\ & \text { No } \end{aligned}$ No	Give 1 mark for each	Illustrations of evidence for awarding each mark
7	Ans: 540 ml - linear scale factor - volume scale factor - method - solution	- $\frac{3}{2}$ or $\frac{21}{14}$ - $\frac{27}{8}$ or $\left(\frac{3}{2}\right)^{3}$ - $\frac{27}{8} \times 160$
Notes:		
(i) (ii)	For candidates who use a 'linear' scale factor, marks 2 and 4 are not available. For candidates who use an 'area' scale factor, mark 2 is not available.	

Question No	Give 1 mark for each	Illustrations of evidence for awarding each mark
8	Ans: $y=(x-1)^{2}-4$ - horizontal displacement - vertical displacement	- $(x-1)^{2}$ - -4
		2 RE
Notes:		

Question No	Give 1 mark for each	Illustrations of evidence for awarding each mark
10 (a)	Ans: $\mathbf{1 5 0} \mathbf{m}^{\mathbf{2}}$ - calculation	- 150
		1 KU
Notes:		
(b)	Ans: 12 m - equating expressions - consistent substitution - consistent solution	- $\frac{1}{2} \times \mathrm{AC} \times \mathrm{BD}=150$ - $\frac{1}{2} \times 25 \times \mathrm{BD}=150$
		3 RE
Notes:		

Question No	Give 1 mark for each	Illustrations of evidence for awarding each mark
11 (a)	Ans: $3 x$ - expression	- $3 x$
		1 RE
Notes:		
(b)(i)	Ans: £38 - evaluation	- 38 ($\begin{array}{r} \\ \\ \hline\end{array}$
(ii)	Ans: $2 x+8 \quad($ or $20+2(x-6)$) - starting expression - expression	- $(x-6)$ - $20+2(x-6)$
		2 RE
Notes:		
(c)	Ans: 9 - inequality - solving inequality - solution	- $2 x+8<3 x$ - $\quad x>8$
	- Trial and check method:	- using at least 3 trials - two trials must be for 8 and 9 - explicit statement of solution
		3 RE
Notes: (i)	An answer of 9 without working is aw	

2006 Mathematics SG - Credit Level - Paper 2

Marking Instructions

Award marks in whole numbers only

Question No	Give 1 mark for each	Illustrations of evidence for awarding each mark
1	Ans: $\mathbf{3 \cdot 1 2 \times 1 0}{ }^{8} \mathrm{~km}$ - substitution - calculation - scientific notation	$\pi \times 2 \times 4 \cdot 96 \times 10^{7}$ 311645991 $3 \cdot 12 \times 10^{8}$

Notes:
(i) Allow legitimate variations for π.
(ii) For $3 \cdot 12 \times 10^{8}$ without working, award $3 / 3$
(iii) For 1.56×10^{8} without working, award $2 / 3$
(iv) For 7.73×10^{15} without working, award $2 / 3$
(v) For any other incorrect answer, the third mark is only available if that answer has first been expressed in full.
(vi) For any other answer without working, award $0 / 3$

Question No	Give 1 mark for each	Illustrations of evidence for awarding each mark
2 (a)	Ans: 76.5, 6.75 - mean - method - process/solution	- $76 \cdot 5$ - $\sqrt{\frac{35341-\frac{459^{2}}{6}}{5}}$ or equivalent - 6.75
Notes: (i) An answer without working which can be rounded to $6 \cdot 75$ may be awarded the $2^{\text {nd }}$ and $3^{\text {rd }}$ marks.		
(b)	Ans: valid comments - comparing means - comparing standard deviations	the children's pulse rates tend to be higher there is less variation in the children's pulse rates
Notes: (i) Statements must show understanding of the concept. eg: "children have a higher pulse rate" is acceptable but "children have a higher mean" is not acceptable.		

Question No	Give 1 mark for each	Illustrations of evidence for awarding each mark
3	Ans: $£ 300$ - \quad valid strategy - process - solution	$108 \%=324$ division by 1.08 300
Notes: (i) (ii) (iii)	For $£ 300$ without working award For $£ 298.08(324 \times 0.92)$ with or For $£ 349.92(324 \times 1 \cdot 08)$ with or	king award $0 / 3$ king award $0 / 3$

Question No	Give 1 mark for each	Illustrations of evidence for awarding each mark
4 (a)	Ans: $3 x^{2}+11 x-4$ - expression	- $3 x^{2}+11 x-4$
		1 KU
Notes:		
(b)	Ans: $2 m^{\frac{1}{2}}+m^{\frac{5}{2}}$ - first term - second term	- $2 m^{\frac{1}{2}}$ - $m^{\frac{5}{2}}$
Notes:		
(c)	Ans: $\sqrt{5}$ - simplifying surd - subtraction	- $\sqrt{20}=2 \sqrt{5}$ - $\sqrt{5}$
Notes:		

$\begin{aligned} & \text { Question } \\ & \text { No } \end{aligned}$	Give 1 mark for each	Illustrations of evidence for awarding each mark
5	Ans: $\mathbf{1 1 . 3}^{\circ}$ - valid strategy - process - valid strategy - solution	- use of Pythagoras - 10 - use of trigonometry - 11.3°
		4 KU
Notes:		
(i)	When MR is taken as 12 instead of 6, MS is $14 \cdot 42$ and the required angle is $7 \cdot 89^{\circ}$. This may be awarded $3 / 4$ (marks 1,3 and 4)	
(ii)	Candidates who use MS $=8$ may be awarded the last two marks for - $\tan x=\frac{2}{8}$ - 14°	
	Do not penalise candidates who work in radians or grads.	

Question No	Give 1 mark for each	Illustrations of evidence for awarding each mark
6 (a)	Ans: $\mathbf{1 2 4}^{\mathbf{0}}$ - strategy - consistent solution	- $\angle \mathrm{BCN}=50^{\circ}$ - 124°
Notes:		
(i) For an answer of 124° with or without working award $2 / 2$. (ii) Any other answer must be consistent with working to obtain the second mark.		
(b)	Ans: 305 m - strategy - substitution - solution - consistent rounding	appropriate use of cosine rule $\begin{aligned} & \mathrm{b}^{2}=110^{2}+230^{2}-2 \times 110 \times 230 \cos 124^{\circ} \\ & 305.44 \\ & 305 \end{aligned}$
		4 RE
Notes:		
(i) (ii) (iii) (iv)	Within the correct solution, $305 \cdot 4$ For a wrong answer, the final mar Evaluating $14400 \cos 124^{\circ}$ loses t Do not penalise candidates who	be stated to gain full marks. ed only for an explicit rounding. marks. ians or grads.

Question No	Give 1 mark for each			Illustrations of evidence for awarding each mark		
7 (a)	Ans: 504				504	
						1 KU
Notes:						
(b)	Ans: 327	radius ent substit ging			$0.7 \mathrm{~cm}$ $\begin{aligned} & 504=\pi \times 0 \cdot 7^{2} \times h \\ & \frac{504}{\pi \times 0 \cdot 7^{2}} \end{aligned}$ $327 \mathrm{~cm}$	
Notes:						
	Radius	Volume	(i)			
	7 mm	504000	3274 (mm)	4/4		
	7 mm	5040	$32 \cdot 7$ (mm)	3/4		
	14 mm	504000	818.5 (mm)	3/4		
	1.4 cm	504	$81.85(\mathrm{~cm})$	3/4		
(ii) For candidates who use πd, marks 1 and 2 are not available.						

Question No	Give 1 mark for each	Illustrations of evidence for awarding each mark
8	Ans: $\mathbf{2 2 3 0}$ grams - valid strategy - length of arc - scaling - solution	- $\frac{284}{360}$ - $44 \cdot 6$ - knowing to $\div 2$ and $\times 100$ - 2230
		4 RE
Notes: (i)	Last mark can be awarded only if	involves π

Question No	Give 1 mark for each	Illustrations of evidence for awarding each mark
9 (a)	Ans: 14 - substitution - solution	- $\frac{1}{2} \times 7 \times(7-3)$ - 14
Notes: (i) For an answer of 14 without working award $2 / 2$.		
(b)	Ans: proof - equating - rearranging	- $65=\frac{1}{2} n(n-3)$ - $n^{2}-3 n-130=0$
Notes:		
(c)	Ans: 13 - factorising - solving - rejecting negative value	- $(n-13)(n+10)$ - $13,-10$
	Notes:	3 RE
(i) (ii) (iii) (iv)	The second mark is awarded only When the given quadratic produc for a statement such as "no such p For an answer of 13 justified by For an answer of 13 without work	answers are shown. id solutions, the $3^{\text {rd }}$ mark may be awarded sts". award $1 / 3$. /3.

$\begin{aligned} & \text { Question } \\ & \text { No } \end{aligned}$	Give 1 mark for each	Illustrations of evidence for awarding each mark
11(a)	Ans: $(3+x) \mathrm{cm}$ - expression	- $3+x$
		1 RE
Notes:		
(b)	Ans: proof Method 1: - strategy - cross-multiplication - proof	- $\frac{\mathrm{PQ}}{8}=\frac{3+x}{6}$ - $\quad 6 \mathrm{PQ}=8(3+x)$ - $4+\frac{4}{3} x$
	Method 2: - strategy - application - proof	- \quad Scale Factor $=\frac{3+x}{6}$ - $\left(\frac{3+x}{6}\right) \times 8$ - $4+\frac{4}{3} x$
	Method 3: - strategy - application - communication	- substitution of $4+\frac{4}{3} x$ into a correct equation - cross-multiplication - $\mathrm{PQ}=4+\frac{4}{3} x$
		3 RE
Notes:		

KU 23 marks
RE 29 marks
Final KU 45
Totals RE 45

